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CHAPTER 1 I

Introduction

This thesis examines some key aspects of the Mandarin Noun Phrase from a computational
perspective. More specifically, we will use Natural Language Generation algorithms to
shed light on the way in which Noun Phrases in Mandarin are employed to express
information. As part of this exploration, we will sometimes compare Mandarin with other
languages. To introduce the reader to the main issues in this area, we will first say a few
informal words about Natural Language Generation (§1.1), about Noun Phrases (§1.2),
about Computational Generation of Noun Phrases (§1.3), and about the hypothesis that
Mandarin is a “cool” language (§1.4).

1.1 Natural Language Generation

Natural Language Generation (NLG) systems take non-linguistic data as inputs and
produce texts in natural languages automatically by computer programs (see §2.1 for a
more detailed review about NLG techniques). For example, given meteorological data,
an NLG system can generate weather reports. Classic NLG pipeline roughly divides
the generation process into three stages: document-planning (i.e., deciding what to say),
micro-planning (i.e., deciding how to say), and surface realisation (i.e., realising plans into
their surface form).

It has been pointed out that NLG systems can be broadly grouped into two categories:
practical NLG and theoretical NLG. Practical NLG, as the name suggests, focuses on
building NLG systems that have practical values, such as those that generate weather
reports, news, medical reports, and so on. Systems of this kind often start with researching
user requirements (e.g., reporting the weather in ways that can make more users understand
the reports). Theoretical NLG aims to mimic the way in which human beings speak, aiming
at reaching a better understanding of human language use. NLG work of this kind seeks
to understand human patterns of speaking and designing NLG algorithms' that imitate
those patterns as closely as possible. Practical and theoretical NLG can sometimes go hand

Such algorithms are called “product models” (Sun, 2008; Vicente & Wang, 1998), in which all that matters is the
mapping from inputs to outputs. These algorithms are different from “process models”, which model the manner
in which the mapping from inputs to outputs comes about.
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in hand — with one and the same algorithm being used in both — yet they can be thought of
as slightly different enterprises, which pursue different aims.

1.2 Noun Phrases

Noun Phrases (NPs) in Natural Languages have two important functions: referring and
quantifying?. When an NP is used for referring, it is called a Referring Expression (RE).
Consider the following RE:

1 the student

It refers to Tom, broadly speaking, if and only if two conditions are fulfilled: 1) Tom is a
student; and 2) Tom is the only student around. The second condition, in other words,
says Tom is the only student in the context. The Production of REs is widely thought to
be non-deterministic. Given the same situation, speakers produce REs differently. For
example, to refer to Tom, who is a student wearing glasses, in addition to (1), one could
say any of the following REs:

2) a. Tom
b. the student Tom
c. he
d. the student who wears glasses

In part, the preference of speakers can be influenced by whether there is only one Tom in
the context, whether Tom is the only referent that can be referred by pronoun “he” in the
context, whether Tom is first mentioned in the discourse, whether the RE occurs in subject
position, and so on. None of these factors or combinations of factors by itself can decide
which RE should be produced, and it is still not fully understood what factors influence a
speaker’s preference.

Analogous to REs, NPs in their quantification function is called Quantified Expressions
(QEs), for example:

(3)  most students

Variation appears in both understanding and production of QEs. Suppose there are totally
100 students, for some listeners, when connecting (3) with a verb phrase and saying (4), it
means approximately 60 out of 100 students wear glasses. Whereas, for some other listener,
it might mean 80 out of 100 students wear glasses.

(4)  most students wear glasses

For producing QEs, given a situation where 81 out of 100 students wear glasses, one might
say any of the following:

5) a. Most students wear glasses.
b. Almost all students wear glasses.
c. About 80% of the students wear glasses.

NPs can have other functions than reference and quantification. In particular, it can be argued that indefinite NPs
and bound anaphors neither refer nor quantify. Nonetheless, reference and quantification are often regarded as
the two main functions that NPs can have. See for example Kamp and Reyle (1993) for an integral account.

2



1.3 COMPUTATIONAL GENERATION OF NOUN PHRASES

d. More than three-quarters of the students wear glasses.

Same as REs, studying which factors influence the production of QEs is also valuable.

1.3 Computational Generation of Noun Phrases

Computational generation of NPs (e.g., REs and QEs) uses NLG algorithms to produce
NPs. It is about NLG techniques in the micro-planning and the surface realisation stages in
the NLG pipeline. These techniques can be categorised into practical ones and theoretical
ones. Practical aspects include matters like deciding the syntactic structures of NPs, and
deciding which pronoun to use (“he” or “she”). Theoretical aspects involve issues like
investigating factors that influence the choices of expressions in (2) and (5), and modelling
such choices computationally.

1.4 Coolness and the Trade-off between Brevity and Clarity

Ever since Grice (1975), linguists have been aware that, when we speak, we trade-off
clarity against brevity. This idea has been put forward in particular details in relation to
reference (Khan et al., 2006). For instance, for the use of REs, if one intends to be more clear,
then s/he has to mention more information about the intended referent, which makes the
RE longer, and, therefore, breaches brevity. The reverse is also true.

It has been suggested that East Asian languages (e.g., Mandarin) handle the trade-off
between brevity and clarity differently to those of Western Europe (e.g., English; Newnham
(1971)). Consequently, in this thesis, we will be interested in learning how this trade-off
affects the production of NPs in Mandarin, and the design of Mandarin NLG systems. One
major linguistic theory that closely ties to this trade-off is the theory of C.-T. ]. Huang (1984),
where he suggested Mandarin allegedly leaning more towards brevity, and relying more on
communicative context for disambiguation compared to English. Inspired by the “hot-cool”
division of media (McLuhan, 1964), C.-T. J. Huang (1984) categorised languages into cool
languages (i.e., languages that rely more on context) and hot languages (i.e., languages that
rely less on context). The evidence he provided was focused on the differences between the
use of anaphora in cool and hot languages. Specifically, Mandarin makes liberal use of zero
pronouns (ZP). To exemplify the use of zero pronouns in Mandarin, consider the question:

(6) IRASKREBENHRTH?
ni jintian kanjian biér le ma

Did you see Bill today?

Instead of answering “# E W . 7 7 (wo kanjian ta le; I saw him), Mandarin speakers
often choose a shorter alternative:

7 QOFWOT -
kanjian le
@ saw @.

Here the @ symbol indicates the place from where a pronoun appears to have been
“dropped" from a full sentence. In this example, the pronouns in both subject and object
positions are dropped.
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Later on, the coolness theory was extended to cover other major components in Man-
darin NPs. Mandarin NPs use determiners and classifiers to express definiteness and
plurality. For example, in (8), the determiner “iX” (zhe¢; these) and the classifier “££” (xig)
help to form a definite plural NP.

8 XEH
zhe xié shi
these books

However, the plurality and definiteness of Mandarin NPs are often not (or not explicitly)
specified. For example, a bare noun in Mandarin can be either definite or indefinite and
either singular or plural. For example, the NP “+5” (shil) can be translated as any of: “a
book”, “the book”, “books”, and “the books”. Context is needed for deciding which translation
is proper (van der Auwera & Baoill, 1998). More discussion about Huang’s coolness theory
can be found in §3.1.

1.5 Research Questions

This thesis explores how Mandarin speakers produce NPs and how to build computational
models accordingly. Specifically, we came up with the following research question.

Main Research Question To what extent are computational models able to
determine what to say and how to say it in Mandarin noun phrases?

To answer this question, we also come up with the following sub-questions.

Research Question 1 What noun phrases do Mandarin speakers produce, and
how do speakers realise them?

Research Question 2 Does the theory of “Coolness” hold in Mandarin and how
does it affect the design of computational models of Mandarin noun phrases?

Research Question 3 How to build computational models of Mandarin noun
phrases and how well do they mimic human behaviours?

In this thesis, we study two types of NPs in Mandarin: referring expressions and
quantified expressions. We focus on two stages in the NLG pipeline: micro-planning and
surface realisation.

To build computational/NLG models of NPs in Mandarin, we need to first know what
are the characteristics of the Mandarin language production and how are they different from
other languages, such as English (Research Question 1). These require us to experiment
on NPs in both Mandarin and at least one language other than Mandarin, which, in this
thesis, is English since English NPs have been widely studied in the past. When we have a
clear picture of how Mandarin and English speakers use NPs, we can ask ourselves: do
the results validate the Coolness theory of C.-T. J. Huang (Research Question 2)? We are
curious about all interpretations of Coolness introduced in §1.4: from the use of ZPs to the
clarity-brevity trade-off.

After we have answers to the questions above, we investigate how these matter the
way we build computational models/NLG systems. Once the models are built, we need to

4
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find a way to evaluate how well do they mimic the production process of Mandarin NPs
(Research Question 3).

The contents of the present thesis consist of three parts: the first two parts correspond
to the two types of NPs (i.e., REs and QEs) we are interested in respectively, and the last
part focuses on the realisation issues. We hereby specify each research question above with
respect to the subject matters of each part. In the course of introducing what we will do
in this thesis, we mark each work with the notation “[T]” or “[P]” indicating the work
emphasises theoretical NLG or practical NLG. “[T, P]” means the work can be seen as a
hybrid of theoretical NLG and practical NLG. The distinctions implied by this kind of
labelling are not always clear cut, but we believe they are a useful indication of the kind of
contribution that the different parts of our work aim to make.

1.5.1 Generating Referring Expressions

In the first part, we focus on the production of REs. Indeed, there are two different
kinds of Referring Expression Generation (REG) tasks: one-shot REG (which generates
REs individually, in isolation from any linguistic context) and REG in Context (which
generates REs from linguistic contexts). More details about the definitions of them and
their differences can be found in §2.2.

One-shot Referring Expression Generation

We study one-shot REs in Chapter 4 and the above three research questions can be detailed
as follows.

What are the characteristics of Mandarin speakers’ use of one-shot referring expres-
sions and how do they differ from English speakers? Fortunately, there exist corpora
for both Mandarin REs (van Deemter et al., 2017) and English REs (van Deemter, Gatt,
Sluis, et al., 2012), namely MTUNA and ETUNA, and, more importantly, they were built
following a very similar experimental setting. In §4.4, we conduct a detailed analysis of the
use of REs in MTUNA corpus and an initial comparison study between REs in MTUNA and
ETUNA [T]P.

Are Mandarin speakers more likely to produce briefer referring expressions and less
clear referring expressions than English speakers? For this question, we are concerned
with two linguistic phenomena: one is the use of TYPE in REs. The other is the use of
over-specifications and under-specifications. To better understand the use of over- and
under-specifications and compare the use of them in different languages, we propose
a new perspective of specifications that re-defines and sub-categorises over- and under-
specification, and that allows quantitative analysis in §4.4. We then apply this new
perspective on both MTUNA and ETUNA corpus [T].

How well can REG algorithms model referring expressions in Mandarin? In §4.5, we
annotate the semantics of both MTUNA and ETUNA corpora and examine a number of
classic cognitive-inspired REG algorithms on them [T]. We check whether the performance
of each algorithm is in line with our expectations: algorithms that favour brevity works

3 Recall that [T] stands for theoretical NLG and [P] stands for practical NLG
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better on MTUNA than other algorithms. For each algorithm, we also conduct a systematic
comparison between how close its behaviours are to human behaviours in MTUNA and in
ETUNA.

Referring Expression Generation in Context

Subsequently, we study REG in Context in Chapter 5. In a similar vein, building on the
three research questions, we are curious about the following issues.

How do Mandarin speakers use zero pronouns? In §5.2, we investigate several factors
that influence the use of ZPs in a large scale Mandarin Dataset.

How do zero pronouns affect the design of referring expression generation in context
algorithms? Also in §5.2, we show that we can model the use of ZP in a similar way as
modelling pronominalisation in other languages [T]. In §5.4, we show that the existence of
ZP introduces an extra option when deciding referential forms (which is a sub-task of REG
in Context).

To what extent are computational models able to model the use of zero pronouns in
Mandarin? In §5.2, we tackle the task using the rational speech act model by assuming
that speakers tend to choose a ZP if it is salient enough for successful communication.
In §5.3 and 5.4, we attempt to model the task of referential form selection (RFS) in both
Mandarin (which includes an option of ZP) and English (which does not consider ZP as
an option) using deep learning techniques [T, P]. In each of these two sections, we also
conduct interpretability research to understand what linguistic information has been learnt
by these black-box deep learning based models [T, P]. In §5.4, we compare the results of
modelling RFS in Mandarin and English.

1.5.2 Generating Quantified Expressions

In the second part of the thesis, we study the use of QEs. Instead of QEs, we are concerned
with descriptions consisting of multiple QEs so that we can investigate the use of QEs in
complex situations. We call descriptions as such quantified descriptions (QDs). Since this
subject matter has not been explored before, we start our study with QDs in English. The
research questions are elaborated as follows.

How do Mandarin and English speakers use quantified expressions? To understand
the quantifier use, we conduct elicitation experiments of QDs in both English (§6.2) and
Mandarin (§6.3), which yield the QTuNA and the MQTUNA corpora respectively [T]. We
analyse the QDs in each corpus.

How do Mandarin and English speakers use quantified expressions differently? In
§6.3.5, we compare the QDs in QTUNA and MQTUNA corpora. Regarding the coolness,
we focus on the completeness of QDs, the use of vagueness, and the way how speakers
express plurality [T].

6
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How to model quantified descriptions computationally? In §6.4, we propose two algo-
rithms that generate QDs. We evaluate their performance in producing English QDs and
discuss how they can be adapted to produce Mandarin QDs [T].

1.5.3 Surface Realisation

The last part of the thesis is about surface realisation. Since almost all sub-tasks in surface
realisation are inherently practical, for some research questions we merely focus on one
specific sub-task: classifier selection. We adopt research questions as follows.

How do Mandarin speakers use classifiers? In §7.4, we sample a bank of sentences
from a corpus for the task of classifier selection. For each sample, we ask human par-
ticipants to decide the classifiers given its contexts. We then compare the participants’
selections with the reference answers to see how well can human beings accomplish such a
task [T].

How does surface realisation of Mandarin different from that of English? Before
constructing a realiser in Mandarin, we discuss how should a Mandarin realiser should be
different from an English realiser in terms of morphology and syntax in §7.2.

How to build a Mandarin realiser? In §7.2, we build a realisation engine for Mandarin
based on simplenrc (Gatt & Reiter, 2009), namely simpleNLG-zH [P]. We manually
evaluate simpleNLG-zH on generating REs in Mandarin. We also test a number of data-
driven approaches on the task of classifier selection in §7.3 and compare its behaviour with
that of human beings (P, T).

1.6 Methodology

Experiments in this thesis can be roughly categorised into ones that examine computational
models and ones that involve human participants.

1.6.1 Human Experiments

In this thesis, we conduct human experiments aiming to understand how speakers use
languages (i.e., elicitation experiments), and to evaluate the qualities of machine-generated
texts (i.e., human evaluation).

Elicitation Experiments. To understand the language use, we conduct elicitation exper-
iments where, given a set of situations (which could be text, scene, and so on), each
participant is asked to write something in accordance with the instruction. Elicitation
experiments can often yield corpora which can later be analysed and used for building
and evaluating computational models.

Human Evaluation. Human evaluation is to ask human judges to score aspects like
fluency, informativeness, naturalness, and acceptability for each machine-generated text.

7
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Results Analysis. In this thesis, the results of human experiments are always analysed
through both hypothesis testing and post-hoc observations. Hypotheses are made after
designing each experiment but before conducting it. The hypotheses are then tested
building on the results of the experiments. Post-hoc observations are phenomena that are
found after looking into the experimental results. Additionally, for analysing data in a
more informative way, we often need to annotate the dataset before testing the hypotheses
or making observations.

1.6.2 Computational Modelling

Models. In this thesis, we consider a wide range of computational models. This includes
rule-based models, statistical models and deep learning based models.

Evaluation and Analysis. Each computational model is validated by either automatic
evaluation or human evaluation if the model is aiming at producing texts. The effectiveness
of these models is further confirmed by comparing the performance of human beings to
state-of-the-art models. Additionally, since deep learning models are, to a large extent, still
black-boxes, we also conduct interpretability studies to interpret their behaviours.

1.7 Owutcomes of this Thesis

We hereby list datasets, code, software and publications related to this thesis.

1.7.1 Datasets

The annotated MTUNA and TUNA Corpora are annotated versions of the TUNA cor-
pus (van Deemter, Gatt, Sluis, et al., 2012) and the MTUNA corpus (van Deemter et al.,
2017). Each RE is annotated with its semantics (G. Chen & van Deemter, 2020) and whether
it is an over-specification or an under-specification (G. Chen & van Deemter, 2021). The
annotated corpora are available at https://github.com/a-quei/mtuna-annotated.

The QTUNA and the MQTUNA Corpora are corpora of QDs in English and Mandarin
respectively. QTUNA contains 1,414 QDs for 30 scenes (G. Chen, van Deemter, Pagliaro,
et al., 2019) and mQTUNA contains 465 QDs for 15 scenes. Each QD is annotated with
its quantifier use, completeness, and correctness. The datasets are available at https:
/ / github.com/a-quei/qtuna.

1.7.2 Code and Software

Neural Referential Form Selector is a referential form selector that involves a number
of neural network-based RFS models (G. Chen et al., 2021). It also includes several
corresponding probing classifiers aiming at understanding what information each model
learns. The code is available at https:/ /github.com/a-quei/probe-neuralreg.

Quantified Description Generators are implementations of the two QD generation algo-
rithms introduced in G. Chen, van Deemter, and Lin (2019). The code is available at:
https:/ / github.com/a-quei/quantified-description-generation.

8
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1.7 OUTCOMES OF THIS THESIS

SimpleNLG-ZH is a realisation engine following the tradition of simpleNLG for Man-
darin (G. Chen et al., 2018c). The software is available at https://github.com/a-quei/
simplenlg-zh.

1.7.3 Publications

Publications that are related to this thesis include:

1.

Chen, G., van Deemter, K., & Lin, C. (2018a). Modelling pro-drop with the rational
speech acts model. Proceedings of the 11th International Conference on Natural Language
Generation, 159-164. https://doi.org/10.18653/v1/W18-6519

. Chen, G., Same, F, & van Deemter, K. (2021). What can neural referential form

selectors learn? Proceedings of the 14th International Conference on Natural Language
Generation, 154-166. https:/ /aclanthology.org/2021.inlg-1.15

. Chen, G., & van Deemter, K. (2020). Lessons from computational modelling of

reference production in Mandarin and English. Proceedings of the 13th International
Conference on Natural Language Generation, 263-272. https:/ / www.aclweb.org /
anthology /2020.inlg-1.33

. Chen, G., & van Deemter, K. (2021b). Varieties of specification: Redefining over- and

under-specification for an enhanced understanding of referring expressions. Journal
Paper in Preparation

. Chen, G., van Deemter, K., & Lin, C. (2019). Generating quantified descriptions

of abstract visual scenes. Proceedings of the 12th International Conference on Natural
Language Generation, 529-539. https:/ /doi.org/10.18653/v1/W19-8667

. Chen, G., van Deemter, K., Pagliaro, S., Smalbil, L., & Lin, C. (2019). QTUNA: A

corpus for understanding how speakers use quantification. Proceedings of the 12th
International Conference on Natural Language Generation, 124-129. https://doi.org/10.
18653/v1/W19-8616

. Chen, G., & van Deemter, K. (2021a). Computational modeling of quantifier use:

Elicitation experiments, models, and evaluation. Journal Paper in Preparation

. Chen, G., van Deemter, K., & Lin, C. (2018b). SimpleNLG-ZH: A linguistic realisation

engine for Mandarin. Proceedings of the 11th International Conference on Natural Language
Generation, 57-66. https://doi.org/10.18653/v1/W18-6506

. Jarnfors, J., Chen, G., van Deemter, K., & Sybesma, R. (2021). Using BERT for

choosing classifiers in Mandarin. Proceedings of the 14th International Conference on
Natural Language Generation, 172-176. https:/ /aclanthology.org/2021.inlg-1.17

A full list of publications can found in my Curriculum Vitae (see Appendix C).
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CHAPTER 2 I

Background

2.1 Natural Language Generation

There have been different opinions on defining Natural Language Generation (NLG) precisely.
For instance, early NLG surveys/books (e.g., Reiter and Dale (2000)) characterised it as:

the sub-field of artificial intelligence and computational linguistics that is con-
cerned with the construction of computer systems that can produce under-
standable texts in English or other human languages from some underlying
non-linguistic representation of information.

NLG systems following this “narrow” definition take non-linguistics (e.g., table, graph,
and database) as inputs and output natural language accordingly. Examples of this kind
include systems that generate soccer reports (D. L. Chen & Mooney, 2008; Theune et al.,
2001), news (Leppénen et al., 2017), weather reports (Reiter et al., 2005), etc.

Nevertheless, this definition is “narrow” because it excludes applications that gener-
ate natural language as well but take language as inputs, such as machine translation,
summarisation, text simplification. The systems using non-linguistic data as inputs are
called data-to-text generation, while the ones using linguistic inputs are text-to-text generation.
The “Broader” definition (Gatt & Krahmer, 2018) demonstrates that NLG consists of either
data-to-text generation or text-to-text generation.

In this thesis, we use the term NLG referring to the data-to-text generation and the
review in this section will be all about data-to-text generation. As aforementioned in
§1.1, NLG can be categorised as practical NLG and theoretical NLG. Recall that practical
NLG is about building NLG models and designing algorithms that have practical usages.
Commercial NLG systems (Dale, 2020), such as the aforementioned news generation and
report generation systems, belongs to this category. In contrast, theoretical NLG is about
understanding how human beings produce languages, where algorithms are built for
mimicking language production. Much work so far in this category focuses on one specific
module of: referring expression generation. This section will be mainly about the practical
NLG work and, in the next section, we turn to referring expression generation.
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Smoking Information for Heather Stewart

You have good reasons to stop_" We know that all of these n_'lgke it mere likely that you will be able to stop.
Most people who stop smoking for good have more than one attempt.

People stop smoking when they really want to stop. It is encouraging that
you have many good reasons for stopping. The scales show the good
and bad things about smoking for you. They are tipped in your favour.

Overcoming your barriers to stopping...

You said in your questionnaire that you might find it difficult to stop

THINGS YOU LIKE THINGS YOU DISLIKE because smoking helps you cope with stress. Many people think that
it makes you lass it cigarettes help them cope with stress. However, taking a cigarette only
it's a bad example for kids makes you feel better for a short while. Most ex-smokers feel calmer and
you're addicted more in control than they did when they were smoking. There are some
it's relaxing it's unpleasant for others ideas about coping with stress on the back page of this leaflet.
it stops stress - ather people disapprove
you enjoy it it's a smelly habit You also said that you might find it difficult to stop because you would put
:l ’5‘:::*:;;_";‘::: ' :t; :::?;:;U on weight. Afew people do put on some weight. If you did stop smoking,
it stops you craving its bad for others’ health your appetite would improve and you would taste your food much better.

Because of this it would be wise to plan in advance so that you're not
reaching for the biscuit tin all the time. Remember that putting on weight
is an overeating problem, not a no-smoking one. You can tackle it later
with diet and exercise.

And finally...

You could do it...

Most people who really want to stop eventually succeed. In fact. 10
million people in Britain have stopped smoking - and stayed stopped - in

the last 15 years. Many of them found it much easier than they expected We hope this latter will help you feel more confidant aboit giving up

cigarettes. If you have a go, you have a real chance of succeeding
Although you don't feel confident that you would be able to stop if you

were 10 try, you have several things in your favour. With best wishes,

The Heall ntr
+ You have stopped before for mare than a month, e Health Centre

= You have good reasons for stopping smoking.
* You expect support from your family, your friends, and your
workmates

Figure 2.1: A screenshot of an output of the sTOP (Reiter et al., 2003) system.

2.1.1 Pipeline NLG

Analogous to many other software systems, practical NLG systems are often decomposed
into a number of modules. This (i.e., modularisation) makes an NLG system easier to
be maintained and modified. Up to now, most practical NLG systems follow a classic
pipeline architecture proposed by Reiter and Dale (2000) since it not only provides a
well-defined interface between the components in the architecture/pipeline but also allows
each component to be reused independently. Therefore, in this thesis, the term “pipeline
NLG” will refer to this specific architecture by Reiter and Dale (2000), details of which will
be specified in this subsection.

Overview of the Pipeline

Before detailing each component in the pipeline, we would like to elaborate on what kind
of input and output a practical NLG system needs. The exact input and output formats of
NLG systems vary with respect to their usage. Seemingly, it is quite certain that the output
of an NLG system should be “text”. Nonetheless, simply yielding text without concerning
display issues in accordance with the users has been proved to be inadequate (Reiter &
Dale, 1997). Instead, aspects like format, online display and speech output are worth
to be paid attention to in order to render the text in a more useful form. Which form
is useful depends on the application. For instance, if the application needs merely text
that presents simple information (e.g., weather report (Reiter et al., 2005)), then there is
no need for the system to consider structure above sentence level of the generated text.
Conversely, if the application is responsible for a complex task (e.g., persuading smokers
to stop smoking (Reiter et al., 2003)), then the output needs to not only be well structured
but also include graphics (as shown in Figure 2.1). As for the input, it varies in a more
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Document Planning Microplanning

4
i Content Document : : TS .
i [ Determination H Structuring J E_N [ Lexicalisation J [ Aggregation ]

i
| Referring Expression
Linguistic Realisation : Generation

Figure 2.2: The diagram of components in the NLG pipeline.

substantial way. For example, it could be a table, a database, an image and so on. In general
terms, Reiter and Dale (1997) characterised the input of an NLG system as a four-tuple,
consisting of the Knowledge Source to be used, the Communication Goal to achieve, a User
Model, and a Discourse History. For example, to generate weather reports, the knowledge
source is the database storing necessary weather data for the report. The communication
goal is to summarise the weather in a certain period (e.g., a month or a week). Since
the weather reports are always not being personalised, there is no explicit user model.
Likewise, since the weather report generator is often a single-interaction system, there is
also no explicit discourse history.

Roughly speaking, as illustrated in Figure 2.2, Reiter and Dale (2000) proposed a
architecture consisting of three major stages: Document planning, Micro-planning, and
Surface Realisation. Concretely, document planning is responsible for determining the
content and structure of a document. In the micro-planning stage, the system decides in
which way (e.g., words and syntactic structure) the determined/planned content will be
expressed. At length, a surface realiser maps the abstract representations outputted from
the micro-planner into actual text. These three main stages can be further divided into
6 sub-tasks: content determination, document structuring, lexicalisation, aggregation, referring
expression generation, and surface realisation.

Document Planning

Document Planning, which is also named macro-planning (opposite to micro-planning), has
two steps: content determination and document structuring.

Content Determination. As the very first stage of an NLG system, content determination
decides “what to say”. In other words, at this stage, an NLG system determines which
information should be included and which should not. For example, when generating a
weather report of a month, it might not be a good idea to enumerate all temperatures in
that month. A better strategy is to describe merely the trends of the temperature change as
well as the maximum and minimum temperatures. This said, the input data needs to be
pre-processed and interpreted before deciding the contents. Therefore, some data-to-text
generation architectures separate these pre-processing steps from the content determination.
Reiter (2007) introduces two pre-processing steps: signal analysis and data interpretation.

In earlier days, such a task was accomplished by rule-based or template-based mod-
els (Mellish et al., 2006) where the following factors need to be considered (Reiter & Dale,
2000): 1) communicative goal: different communicative goals require different information.
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For instance, a monthly weather report would be different from a daily weather report;
2) target audience: contents should be selected with respect to the assumed or known
characteristics of the audience; 3) information source: what is worth saying depends on
how much and what information is available to the audience.

In recent years, researchers head to data-driven methods, most of which assume content
determination as a sequence labelling task. For instance, Barzilay and Lee (2004) leveraged
Hidden Markov Models to model topic shift, where each hidden state represents a topic in
the document plan. Beyond that, Barzilay and Lapata (2005) proposed to select contents
collectively, where all candidates are considered simultaneously for selection. One plight of
these data-driven content planners is that they require training sets where the alignments
between plan items (e.g., topics) and texts are annotated. However, on the one hand, such
annotated datasets are hard to be built. On the other hand, these alignments are not
necessary for one-to-one mappings. For example, Koncel-Kedziorski et al. (2014) found
that soccer events in data and sentences in associated soccer reports do not one-to-one
correspond. To solve this issue, much work focuses on automatically learning alignments
between data and text.

Document Structuring. The second step of document planning is document structuring.
It is responsible for organising the presentation of the selected contents. The resulting
presentation should make the final generated text coherent and fluent. For example, when
generating soccer matches or weather reports, it is reasonable to produce one or several
sentences for describing the general information in the very beginning. Although some
NLG systems are only concerned with the order of the presentation of the information
(e.g., Portet et al. (2009)), many researchers have suggested that there are more things than
just sequencing should be done. Earlier work attempted to structure the document using
hand-crafted domain-dependent rules (McKeown, 1992), which is hard to handle complex
discourse relations. This was, to a large extent, solved by using the Rhetorical Structure
Theory (RST, E. H. Hovy, 1993; Mann & Thompson, 1988; Scott & de Souza, 1990; Williams
& Reiter, 2008).

Making use of data-driven methods is also possible. Machine learning techniques can
not only help document structuring (Althaus et al., 2004; Dimitromanolaki & Androut-
sopoulos, 2003) but also enable simultaneous content selection and structuring (Duboue &
McKeown, 2003). There are also approaches for information ordering, such as Barzilay and
Lee (2004) and Lapata (2006).

More recently, people in NLG tend to make use of deep neural network for planning
content, which will be elaborated in §2.1.3.

Micro-planning

Micro-planning is responsible for deciding which word, syntactic structure, and so forth
will be used given the selected and structured contents. As shown in Figure 2.2, it contains
three sub-tasks: aggregation, lexicalisation, and referring expression generation.

Aggregation. Micro-planner takes the outputs of the document planner which are usually
trees (e.g., RST trees) indicating the structure of the document. However, not all the items
in the tree need to be realised in separate sentences, some of which need to be aggregated
to make the generated text more fluent and readable (H. Cheng & Mellish, 2000; Dalianis,
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1999). The whole process could be seen as an inverse process of sentence splitting in text
simplification. For example, for information which could be expressed by two sentences:

(9) a. Yesterday was hot.
b. Yesterday was humid.

A sentence aggregator merges them into a single sentence: “Yesterday was hot and humid” to
make it more fluent and readable. Reape and Mellish (1999) pointed out that aggregation
could be categorised as: (1) syntactic aggregation: such as the aggregation happen in the
above example; and (2) semantic aggregation: such as aggregating “the chair and the table”
to “the furniture”.

Same with other sub-tasks, research in sentence aggregation starts with using hand-
crafted rules (Dalianis, 1999; E. Hovy, 1987; Shaw, 1998). More recent work moves towards
data-driven methods. This includes approaches for either semantic aggregation, which
sometimes be seen as a part of content selection (Barzilay & Lapata, 2006; H. Cheng &
Mellish, 2000; Walker et al., 2001), or syntactic aggregation, which targets at reducing the
redundancy of the generated text (Harbusch & Kempen, 2009; Kempen, 2009).

Lexicalisation. Lexicalisation is of choosing which words and syntactic structures should
be used to express the selected content (Reiter & Dale, 2000). Lexicalisation matters because
given a piece of information, there can be numerous ways to express it in natural language.
Gatt and Krahmer (2018) used a scoring event in soccer match news generator as an
example. For a scoring event, one could say any of the following:

(10) a. to score a goal
b. to have a goal noted
c. to put the ball in the net

The general target of lexicaliser is not only choosing the proper lexicon and syntax but
also generating text with a certain amount of variations, which makes the generated texts
interest more readers (Odijk, 1995). Theune et al. (2001) argued that

Variation is propositional with the length of the generated text, and with the
number of similar text to be read.

However, the variation in the generated texts is not the larger the better. For example,
Reiter et al. (2005) pointed out that there is less such “idiolect” in weather reports than
in soccer reports. Castro Ferreira et al. (2016) found that the variation of Referential Form
depends on where in a text the variations occur.

The lexicalisation is hard in terms of three aspects: first, the lexical selection is often
between semantically similar, near-synonymous (Edmonds & Hirst, 2002), or taxonomically
related words (animal vs. dog, (Stede, 2000)). For example, for the selection of trend verbs
(e.g., choosing between “climb” and “soar” in the sentence “Microsoft’s profit climbed 28%"),
there is a lot of overlaps in the usage of them (G. Chen & Yao, 2019). Given an underlying
change (e.g., 20%), there are at least 10 different verbs that are judged appropriately by
human readers.

Second, there is not always a crisp concept-to-word mapping for modelling lexicalisa-
tion (Power & Williams, 2012; Reiter et al., 2005). This is caused by the fact that most words
in natural languages are vague. For instance, it is hard to have a crisp definition when
we say an object is “large” and when we say an object is “small”. This makes the choice of
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word depends on either its intended meaning or its context as the meanings of many vague
expressions are context dependent (cf. Barwise and Perry (1981), Kennedy and McNally
(2005) and van Deemter (2012)). To address vagueness in language generation, possible
solutions include fuzzy logic (Ramos-Soto et al., 2016) and probabilistic logic (Dietz, 2017;
Lassiter, 2009).

At length, there are huge variations in word usage (Reiter & Sripada, 2002). A natural
way to handle such huge variations is to use machine learning. Up to now, machine
learning has been used in the selection of colour words (Zarriefs & Schlangen, 2016), trend
verbs (Smiley et al., 2016; D. Zhang et al., 2018), and words in weather reports (X. Li et al.,
2016).

Referring Expression Generation. The task of referring expression (REG) is to generate
a description of a referent that enables the reader/hearer to identify that referent in a
given context (Reiter & Dale, 2000). In this section, our review focus on the REG system
embedded in a practical pipeline NLG system whose “context” is natural language. !

As illustrated in §1.2, given a referent, there are multiple alternatives referring expres-
sions. For example, when referring to “Joe Biden”, we could say any of the following:

(11) a. Joe Biden
b. Mr. President (when this thesis is written)
c. Joe
d. Biden
e. He

The decision depends on the context surrounding the target referent. > The REG task looks
analogous to the lexicalisation task, but it should have less variation (Castro Ferreira et al.,
2016), which is because (in the language of Reiter and Dale (2000)) REG is

a discrimination task, where the system needs to communicate sufficient infor-
mation to distinguish one domain entity from other domain entities.

The task of REG contains two stages of choices. The first choice is the choice of
referential form, which decides in which form the target referent should be realised.
Most of the time, it is about a selection from four alternatives: pronoun, proper name,
description, and demonstrative. Such a decision partly depends on whether the target
entity is “focused” or “salient”. In light of theoretical linguistics, there is a bank of factors
that would influence the salient of a referent. For example, Chafe (1976) and Prince (1981)
suggested that when a new referent is first introduced to the discourse, it is less likely to
be referred to as a pronoun. More details about these factors will be discussed in §2.2.2.
By making use of these factors, both rule based (Henschel et al., 2000) and data-driven
approaches (Greenbacker & McCoy, 2009; Hendrickx et al., 2008) have been proposed for
selecting the referential form. The development of this sub-task has been highly encouraged
by a series of shared tasks on the Generation of Referring Expressions in Context (GREC,
Belz et al., 2010).

REG has also been used as a tool to understand human language production. “Context” in REG could also be
visual scenes or images. Both of these two aspects will be discussed in §2.2. The REG task discussed in this
section is also called “REG in Context” or “Discourse REG”.

Target referent (entity) is the referent (entity) that the REG module makes decisions on at the moment.
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The second choice happens if the selected referential form is description, which is about
deciding the content of the description. Unfortunately, due to the complexity of the task.
The selection of referential content (in the task of REG in context) is often decided by simple
one-to-one rules (i.e., each referent is associated with a single description). Most recently,
“real” production is enabled by means of deep learning techniques (Cao & Cheung, 2019;
Castro Ferreira, Moussallem, Kadar, et al., 2018; Cunha et al., 2020).

More background about REG related tasks, corpora, and algorithms can be found in
§2.2.

Surface Realisation

The last stage is to map the plan into its well-formed surface form, i.e., surface realisation.
Gatt and Krahmer (2018) categorised the surface realisation (or so-called linguistic realisa-
tion) techniques into three lines of approaches: human-crafted templates, human-crafted
grammar-based systems, and statistical approaches. The task of surface realisation involves
the use of the correct syntax and the generating of the right morphological forms.

Template-based approaches are always used in NLG systems that are small and favour
less variation. One advantage of the template method is that the developers could have
full control over the outputs at hand, which results in the NLG systems being safer.
Thanks to this merit, many large-scale NLG systems and dialogue systems use template
methods in their surface realiser. This approves that the template-based systems are
able to handle complex situations, making it difficult to distinguish templates from more
“real” NLG (van Deemter et al., 2005). More recently, researchers have started to consider
marrying templates with data-driven approaches by learning templates automatically from
corpora (Angeli et al., 2012; Kondadadi et al., 2013).

Grammar-based methods offer domain-independent alternatives. Most systems fell in
this line of work make use of specific types of grammar. For example, KPML (Bateman,
1997) was built upon the systemic-functional grammar (Halliday et al., 2014). This makes
these systems difficult to be used since they require developers to be familiar with those
grammar formulations. In response to these, simple realisation engines which provide
easy-to-use syntax and morphology operation APIs have been developed (a typical example
of which is the SimpleNLG system developed by Gatt and Reiter (2009).

Like other modules, recent research on linguistic realisation attempts to use statistical
approaches. Most statistical approaches are used in data-driven grammar-based realisers.
Using statistical approaches can help the user of grammar-based realiser not care much
about the grammar itself so that advanced grammar formulations can be used. For instance,
OpenCCG (Espinosa et al., 2008; White & Rajkumar, 2009, 2012; White et al., 2007) uses
Combinatory Categorial Grammar (Steedman, 2000) to build a broad coverage English
surface realiser. Likewise, there have been realisers that use the Context-free Grammar (Belz,
2008), the Head-driven Phrase Structure Grammar (Carroll & Oepen, 2005; Nakanishi et
al., 2005), the Lexical Functional Grammar (Cahill & van Genabith, 2006), and the Tree
Adjoining Grammar (Gardent & Narayan, 2015). Additionally, statistical methods also
allow the interaction better between the surface realiser and the micro-planner (Gardent &
Perez-Beltrachini, 2017). In recent years, deep learning-based approaches have proved to
be super effective in linguistic realisation, which will be discussed in §2.1.2 and §2.1.3
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2.1.2 End2End NLG

Gatt and Krahmer (2018) distinguishes NLG systems into three architectures: 1) pipeline
architecture (see §2.1.1); 2) planning based NLG, which views NLG as planning; and 3)
end2end architecture, most of which uses machine learning techniques to output given the
input directly.

They also pointed out that there are two major flaws: one is the generation gap (Meteer,
1991), indicating the mismatch between the strategic and tactical components. For example,
Inui et al. (1992) described a situation where the planned sentence order in the document
planning phase might cause ambiguity in linguistic realisation. The other is that the
pipeline NLG does make some generation constraints hard to be realised. For instance,
pipeline NLG is hard to follow length constraints, especially in early stages (Reiter & Dale,
2000), which is not a problem for End2End systems (Ficler & Goldberg, 2017).

Thanks to the recent development of Deep Learning techniques, deep learning-based
End2End approaches have dominated the state-of-the-art research in the realm of NLG. It
not only helps to produce more fluent and human-like texts but also makes certain tasks
that are hard for pipeline NLG (e.g., image captioning, storytelling and so on) become
easier. In contrast, these novel techniques also introduce new challenges to NLG systems,
which will be discussed in §2.1.3. We will introduce the techniques behind Neural Natural
Language Generation (NNLG) and their applications in this section. But before that, we
start with the planning based and End2End NLG systems before the age of deep learning.

Beyond the Pipeline Architecture

Planning-based NLG. There has been a long tradition of tackling the Artificial Intel-
ligence problem as planning. It is about identifying a sequence of actions to achieve a
particular goal. When adopting this paradigm to NLG, the “particular goal” is a “commu-
nicative goal”, which is one of the major inputs of an NLG system, and the “sequence of
actions” is a series of production operations of language (Clark, 1996).

Building on the fact that all stages (i.e., document planning, micro-planning, and
linguistic realisation) can be treated as planning problems, the boundaries between each
task in the NLG pipeline get blurred. This is done by unifying the operations for deciding
what to say and the operations for deciding how to say into a single set of operations. For
instance, Heeman and Hirst (1995) proposed to use KAMP (Appelt & Appelt, 1992) to
do REG, where the property selection and surface realisation are done as two sub-goals.
Additionally, planning based methods also has their own advantage of being friendly with
grammar (e.g., Bateman (1997) and Halliday et al. (2014)) and discourse (e.g., Mann and
Thompson (1988)) formalism, but, meanwhile, they also bear the problem of low-speed
(Koller & Petrick, 2011).

There also has been work on marrying planning with machine learning tools. Concretely,
this line of work views achieving the communicative goal as a stochastic optimisation
problem views the generation as a Markov Decision Process and uses the technique of
Reinforcement Learning to model such a process (Lemon, 2008; Rieser & Lemon, 2009,
2011). In this way, we could handle the uncertainty caused by the trade-off between
informativeness and brevity. Such a strategy has been used for generating restaurant
recommendations (Rieser & Lemon, 2009) and referring expressions (Janarthanam &
Lemon, 2014).
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Early End2End NLG. The fundamental idea behind early End2End NLG is to formulise
each sub-task of NLG as a classification task (Duboue & McKeown, 2003; Filippova &
Strube, 2007) and optimise all tasks/classifiers jointly /globally. This includes work such
as Konstas and Lapata (2013a), which unifies content selection and surface realisation
based on the idea of Liang et al. (2009), who learn how to align database records and
text segments using a hierarchical hidden semi-Markov generative model. On the basis
of the same idea, Konstas and Lapata (2013b) extended Konstas and Lapata (2013a) to
include induction rules of context-free grammar. By joint learning all components, the
resulting architecture could suffer less from the problem of error propagation (i.e., the error
caused by decision in earlier stages will propagate to later stages). In addition to learning
alignment using probabilistic models, there are other solutions for joint learning, including
Integer Linear Programming (Barzilay & Lapata, 2006; Lampouras & Androutsopoulos,
2013) and Imitation Learning (Lampouras & Vlachos, 2016).

Neural Natural Language Generation

In the past decades, Neural Network based models (or Deep Learning based models;
Goldberg (2017) and Goodfellow et al. (2016)) are on their path to dominate our research
in NLP. Neural Networks were designed to be good at learning representations through
back-propagation (Rumelhart et al., 1986). When applying to NLP tasks, such a function
has been proved to be effective for capturing grammatical information and meanings of
words (Mikolov et al., 2013; Pennington et al., 2014). Beyond word, recurrent architectures,
including the recurrent neural network (RNN, Rumelhart et al., 1986) and its extensions
like long and short term memory units (LSTM, Hochreiter & Schmidhuber, 1997), and
gated recurrent units (GRU, Cho et al., 2014), are designed for sequential modelling. They
are capable of learning representations of sentences or even documents (Tang et al., 2015)
and of language modelling (Mikolov et al., 2010). As figured in Gatt and Krahmer (2018),
the very first application of deep learning for generating natural language is the work
of Sutskever et al. (2011). They assessed the ability of character-based LSTM for generating
grammatically correct English sentences.

However, what Sutskever et al. (2011) did was not “real” NLG, but generating random
sentences from language models given prompts. For example, given a prompt “ABC et
al. (2008)” the model is of generating the rest of a potential sentence: “to be evaluated
and motivated by providing optimal estimate”. “Real” Neural NLG (NNLG) that generates
natural languages on the basis of certain contexts/inputs was firstly realised by means of
conditional RNNs and the RNN Language Model (RNNLM, Mikolov et al., 2010). Building on
this idea, Wen et al. (2015) proposed to use RNN to generate delexicalised sentences given
dialogue representations. For example, given the following speech act:

(12)  inform(name=Seven_Days, food=Chinese)

, where the speech act is “inform”, indicating the generated sentence should present certain
information and the two key-value pairs decide what the generated sentence need to say,
an NNLG generates a delexicalised sentence:

(13)  SLOT_NAME serves SLOT_FOOD .

It appears that what a potential NNLG needs to do is micro-planning and surface realisation.
We hereby use this task as an example to introduce how RNN is used for NLG.
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NAME  serves FOOD . </5>

inform(name=5Seven_Days, food=Chinese)

Figure 2.3: Diagram for NNLG from speech act using RNN (Wen et al., 2015).

Suppose we have an input speech act x, and we tend to generate a sentence from the
starting symbol “(S)” referred as wy. These inputs are firstly mapped into their one-hot
representations: x and wy. Figure 2.3 describes the procedure of how to use these inputs
to generate outputs using RNN. During generation, at a time step ¢, the model produces the
next token w; 1 based on the input x and decoded token at the previous step w; with the
following procedure:

1. Compute the hidden representation h; with respect to the previous hidden represen-
tation h;_1, previous token w;, and the input x, by:

ht =0 (Whht_] + WwZUt + Wxx) ’ (21)

where ¢ is the Sigmoid function®. Wj,, Wy, and Wy are trainable weights in the model.
Note that Wen et al. (2015) proposed to inject input information at every time step is
to ease the problem of vanishing gradient of RNNs (Pascanu et al., 2013);

2. Compute the probability distribution of the next token depending on the previous
tokens and the input:

P(w; 1 |wr, wi_1, ..., wp, x) = Softmax (W, hy) (2.2)
where the Softmax function is the normalised multi-class version of Sigmoid.

At length, at each step, Wen et al. (2015) proposed to sample a token w;; from the
distribution P(wy1|w;, wi_1, ..., wo, x). The generation would stop if the end symbol (/S)
is generated. Instead of random sampling, many other work on NNLG produces outputs
in ways such as always selecting the word type that has the highest probability among

3 The Sigmoid function is defined as:
1

- 1+4+e

o(a)
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P(wyq1|we, wi_q, ..., wp, x) (which is called greedy decoding. For more discussion about
other advanced strategies (e.g., beam search), please check Holtzman et al. (2020)).

Given the results of a series of evaluation experiments, such a model perform well on
the given task. Nevertheless, this model takes only simple input (i.e., a single speech act
with a limited number of key-value pairs). When it comes to more realistic NLG tasks,
whose inputs could be tables, a set of meaning representations, graphs and so on, the one-
hot encoding used in Wen et al. (2015) is not competent to encode such inputs. Therefore,
an encoder is needed to learn representations of complex inputs. This was done through
the encoder-decoder architecture, which has become a standard solution for generating
language. The encoder-decoder architecture was firstly introduced in Sutskever et al. (2014)
with a form of sequence-to-sequence model (Seq2Seq), which targets text-to-text generation
and assumes the inputs of the model follows a sequential structure. Since most NLG tasks
do not have sequential inputs, much work applied Seq2Seq model on them by linearising
the inputs into the sequential structure in the first place. We will introduce more details of
the Seq2Seq Model below with an example of an End2End NLG task introduced in the
E2E NLG Challenge (Dusek et al., 2018).

Sequence-to-Sequence Model

The task of E2ENLG* is of generating natural language given a set of meaning representa-
tions (MRs). For instance, given the following MRs:

(14) name[Juzzman],
eatType|[coffee],
food[French],
priceRange[moderate],
rating[3/5],
area[riverside],
kidsFriendly[yes],
near[McDonalds]

the job of a generator is to produce:

(15)  The three-star coffee shop, Jazzman, gives families a mid-priced dining experience
featuring a variety of wines and cheeses. Find Juzzman near McDonalds.

The inputs are first linearised into sequences. In the case of E2ENLG task, the linearisa-
tion could be done following a specific “key order”. For instance, Dusek and Jurcicek (2016)
followed a order of: name, eatType, food, priceRange, rating, area, familyFriendly,
near. The above example should be linearised into:

(16)  name Juzzman eatType coffee food French priceRange moderate rating 3/5 area
riverside kidsFriendly yes near McDonalds

Having sequential inputs in hands, we introduce how to produce outputs using the
Seq2Seq model. Suppose an input is represented as X = {xg, x1,..., xy}, the goal of

We use the abbreviation E2ENLG for referring to the NLG task used in the E2E NLG Challenge (Dusek et al.,
2018) in order to distinguish from the term “End2End NLG” in this thesis.
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Figure 2.4: Diagram of the Seq2Seq Model, where the red part is the encoder and the blue
part is the decoder.

a Seq2Seq model is to learn a function f maps the input to natural language VY =
{wo, w1, ..., wp}, ie., f: X — Y. A typical Seq2Seq model consists of two components: an
encoder and a decoder, as shown in Figure 2.4.

At each encoding step, the representation h58)5 is computed in accordance with the

()

current input x; and the previous representation h, ";:

W =g (w,ﬁe)hﬁi)l + W,Ee)xt) (2.3)

where g(+) is the activation function. The representation at the last time step hgf,) is then fed
into the decoder to be conditioned on. Concretely, at the first decoding step, the decoding

(e)

is done based on the start symbol wg and hy;’:

ny" = g (W + Wi wo) (2.4)

At each of the rest decoding steps, the hidden representations are computed following a
similar manner: p N ;
n? =g (WH + Wi w,) (25)

Last, the production of each token follows the same way as in Equation 2.2.
Note that we hereby only review the fundamental backbone of the Seq2Seq model
(which will later be used in this thesis). There are plenty of different implementations

We use a superscript (e) indicting the current representation appears in the encoder.
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when applying Seq2Seq models to NLG or other NLP tasks. They are not the focus of this
thesis, thus will not be further introduced.

In relation to NLG, the format of E2ENLG’s inputs is still relatively simple compared
to trees, figures, tables, databases and so on. So far, solutions regarding more complex
inputs can be aligned into two lines of work. One is to design algorithms responsible for
linearisation. For example, in Recurrent Neural Network Grammars (RNNG, Dyer et al.,
2016), tree-structured inputs are linearised in a way similar to the “bracket” representations.
The following tree is linearised as: NP A B C NP:

(17) NP

I

A B C
Castro Ferreira, Wubben, et al. (2018) introduced an algorithm to linearise dependency
trees into sequences and do surface realisation using the Seq2Seq model. Gong et al.
(2020) translated inputs table into a set of simple sentences (e.g., the above example can be
translated as: The name is Jazzman. The type is coffee shop. The food is French ...).

The other is to make use of structural encoders to replace the sequential encoder in
the Seq2Seq model. For example, for encoding tables, T. Liu et al. (2018) designed a
hierarchical RNN, and Qasim et al. (2019) and Riba et al. (2019) proposed to use graph neural
networks (GNN, Z. Wu et al., 2020). GNNs are also proved to be good at encoding trees (Q.

Guo et al., 2021) and graph (Beck et al., 2018; Z. Guo et al., 2019; Koncel-Kedziorski et al.,
2019).

Attention Mechanism

One flaw of the vanilla Seq2Seq model is that the representation at the last time step h%e,)

of the encoder cannot memory sufficient amount of information from the input, on the one

hand. On the other hand, only feed h%) at the very first step of the decoder also cannot let
(e)

decoder sufficiently access the information stored in hy; . In response to these two issues, a
better solution should either have a clever way to make use of the hidden representations
at every time step in the encoder or let the decoder access the encoded information more
sufficiently.

One better solution is to use the attention mechanism. Generally speaking, as depicted
in Figure 2.5, by adding an attention mechanism, the encoder output has become a
weighted sum of all hidden representations. Given all encoded hidden states from the

encoder H = {h(()e), h§e>, ey hg\?) }, at decoding step t, the attention is calculated based on
( (d)

htd). First, the model computes a score (sometimes it is called “similarity”) between h;
and each element in H: J
score(hg ),h](f)),k =0,1,..,N, (2.6)

(d)

where h;" is also called as a “query”. The scoring function score(A, B) could be a additive
function (Bahdanau et al., 2015): Vtanh(W4 A + WgB), a production function (Luong et al.,
2015; Vaswani et al., 2017): ATB, and so on. The calculated scores are then normalised to
compute weights for elements in H:

(d) h (e)
" — exp(score(h;”, b)) k=0,1,..,N. (2.7)

Z]N 0 exp(score(hg ), h](e)))
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name Juzzman eatType

Figure 2.5: Diagram of the Seq2Seq with Attention Model.

At length, the final “context” representation of the input at decoding time step ¢ is the
weighted sum of all elements in H:

-
Ct = Z D(khk . (2.8)
k=0

A vital extension of the attention mechanism was inspired by the fact that when
people read different tokes in a piece of text, they will attend to different contexts. Such
an attention mechanism is called intra-attention or self-attention (J. Cheng et al., 2016).
Building on this idea, Vaswani et al. (2017) proposed to replace the RNN based encoder
and decode in the Seq2Seq model with self-attention and name the resulting model as
Transformer. In recent years, Transformer has become one of the mainstream techniques in
NLP, but, strictly speaking, it is still a kind of Seq2Seq model.

Recent Advances

Transformer and its successors have hundreds of millions of parameters. This helps it to be
able to offer significant improvements on many NLP tasks. For instance, on the task of
English-German translation, compared to the Google Neural Machine Translation system (Y.
Wau et al., 2016), Transformer improve the BLEU score from 24.6 to 27.3. Additionally, if we
increase the number of parameters, then the score can be further increased to 28.4.

Pre-training. To take full advantage of this great amount of parameters, most recently,
many researchers propose to pre-train Transformer on large-scale unlabelled data as a
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language model. Subsequently, the pre-trained Transformer is fine-funed on the target tasks.
A number of pre-training strategies have been proposed. We hereby list three of them. The
first one is the BERT model (Devlin et al., 2019), which has been widely used in natural
language understanding (NLU) tasks. ® BERT is exactly the encoder of Transformer and
is pre-training in a way called masked language model (MLM). The idea is first to mask
out a certain number of tokens from a sentence, and then ask the model to “recover” the
masked tokens. Although BERT was designed for NLU tasks, since it is able to predict the
masked token given its context, it can also be used for NLG sub-tasks.

The other two are GPT (Brown et al., 2020; Radford et al., 2019) and BART (Lewis et al.,
2020), which were designed for language generation. In contrast to BERT, GPT is the decoder
of Transformer. It is trained as a normal language model (i.e., predicting the next word
given previous words) on a huge web-crawled corpus. BART also follows the paradigm of
MLM, but is trained in a full Seq2Seq architecture.

Creativity. Thanks to the powerful studying and generalising ability, NNLG (especially the
Transformer based model) enables us to tackle many tasks that used to be believed hard
in the age of pipeline NLG, such as image captioning, visual question answer, question
generation and so on. In addition, these, in particular, include tasks that require creativity.
For example, T.-H. K. Huang et al. (2016) used NNLG to conduct visual storytelling, i.e.,
generating a story given a series of images or a video. Other examples include the
generation of traditional Chinese poems (X. Zhang & Lapata, 2014), Rap Lyrics (Malmi
et al., 2016), product reviews (Zang & Wan, 2017), citation text (Xing et al., 2020), Recipe (Z.
Yu et al.,, 2020b), Metaphor (Z. Yu & Wan, 2019), and Homophonic Pun (Z. Yu et al., 2020a).

Interpretability, Controllability, and Ethics. Different from pipeline NLG or statistical
NLG, Deep Learning based End2End NLG is a black-box. For an NLG task, how an NNLG
accomplishes the task and what it has done are not lucid. These outputs of NNLG models
are not interpretable and controllable compared to pipeline NLG models. In recent years,
NLG researchers have started to look at the interpretability and controllability of NNLG
models.

Most attempts for interpreting neural language generation models are of text-to-text
generation. For example, Ding et al. (2019) and J. Li, Chen, et al. (2016) used gradient-based
method to understand how each input token contributes to each decision of Neural Machine
Translation (NMT) systems. Kobayashi et al. (2020) tried to do the same thing by means
of using the attention weights in the Seq2Seq attention model. There is also work that
attempted to understand how well NMT can capture information of morphology (Belinkov,
Durrani, et al., 2017), syntax, and semantic (Belinkov, Marquez, et al., 2017) by using
probe classifiers. In the realm of NLG (i.e., data-to-text generation), the interpretation is
much harder (than for example MT) since the mappings between its inputs and outputs
are of higher complexity. Linzen et al. (2016) conducted behaviour analysis to assess
how well an LSTM-based generator capture syntactic dependencies. This was done by
checking whether the generated text is correct on subject-verb agreement. For example,
in the following example, if the generator generates “are”, then it failed to capture the
subject-verb agreement.

6 Interestingly, since there is too much BERT related work, people have started to refer to work of this kind as
“BERTology” (Rogers et al., 2020)
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(18) a. The key is on the table.
b. * The key are on the table.

Following a similar idea (i.e., behaviour analysis), Petroni et al. (2019) validated whether
the pre-trained language model (e.g., BERT or GPT) has learnt knowledge of human beings.
Gehrmann et al. (2019) studied factors to distinguish computer-generated languages from
human-produced ones.

Regarding controllability, much work has been done to control the content and the
style of the generated text. Ficler and Goldberg (2017) did a systematic evaluation of
possibilities to control style (e.g., personal, length, or descriptive) and content (e.g., theme
and sentiment) in NNLG. They demonstrated that all these variables are controllable to
different extents. Recent studies focused on more stable and fine-grained controls. For
example, there has been work to build dialogue systems that are emotional (Zhou et al.,
2018), personalised (S. Zhang et al., 2018; Zheng et al., 2019), stylised (Zheng et al., 2021)
or that are equipped with external knowledge (Madotto et al., 2018). There also has been
a long tradition in NLG for research on Style Transfer (Jin et al., 2020), which aims at
transferring a piece of text from one style to another.

Due to the low interpretability and controllability of NNLG, deploying NNLG systems in
real life might cause certain ethic issues. In recent years, one of the spotlighted research
subjects in NLP is about the potential biases learnt by neural models, which includes biases
regarding gender, race, religion, etc. For language generation models, most studies focused
on ethical issues in machine translation and dialogue systems. However, so far, research of
this kind is almost blank for data-to-text generation (Sheng et al., 2021).

Non-auto-regressive Decoding. The decoder of the Seq2Seq model always predicts the
next word (i.e., w;41) on the basis of previous decoded results (i.e., wy, w;_1,...), which
is called auto-regressive decoding. One flaw of auto-regressive decoding is that the
predictions cannot be parallelised since every decision has to depend on previous decisions.
The alternative is the non-auto-regressive decoding (NAD), which, at an early time, was
realised as a two-stage procedure (Gu et al., 2018; Ma et al., 2019): 1) predict the length of
the output; and 2) predict all words at one time or in a constant number of steps. More
recently, some NAD treated the inference/decoding process as a refinement process, which
is done by series insertion/deletion operation (Gu et al., 2019; J. Lee et al., 2018; Stern
et al., 2019; Susanto et al., 2020). In this way, NAD could achieve on par performance with
auto-regressive decoding while accelerating and parallelising the whole process.

2.1.3 Pipeline NLG vs. End2End NLG

Reiter (2018a) and Rohrbach et al. (2018) figured out that compared to pipeline NLG,
End2End neural NLG are more likely to produce “Hallucinate”. For instance, in the
E2ENLG task, given the input:

(19) name[Cotto], eatType[coffee shop], near[The Bakers]

The TGen system (Dusek & Jurcicek, 2016), which received that highest BLEU score,
generates:

(20)  Cotto is a coffee shop with a low price range. It is located near The Bakers.
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However, none of the information in the input suggests this coffee shop is in a low price
range. In other words, it generates content that does not appear in the input, which is called
“Hallucination”. Possible reasons behind this include: 1) the dataset used for training
End2End NLG systems are always noisy, and NNLG models cannot detect these noises but
learn from these noises; 2) as what has been introduced, the decoder of a Seq2Seq model is
a conditional LM. During inference, it is possible that the decoder relies too much on the
previous tokens (as an LM) but too little on the conditions. In response to the first issue,
Dusek et al. (2019), Nie et al. (2019), and H. Wang (2019) added an extra pre-processing
step on the training data to reduce the amount of noise as much as possible. Regarding
the second issue, Balakrishnan et al. (2019) and Kang and Hashimoto (2020) proposed
to directly manipulate the output probability while Dziri et al. (2021) tried to solve the
problem by refining the generated text. Either way, this makes the advantage of End2End
NNLG less significant.

Interestingly, before the age of deep learning, many tasks cannot be done with high
quality automatically. For example, it was hard to detect actions in images. Consequently,
when building image captioning systems, it was hard to decide the verb in the sentence.
To solve this, Mitchell et al. (2012) proposed to hallucinate, i.e., the system chooses the
most likely verb using word co-occurrence statistics alone. Therefore, at that moment, in
this case, hallucination was believed to be a “good” thing. Deep learning methods can
help to come across these difficulties of understanding images, languages, or tables, but,
simultaneously, overly produce hallucinations.

Here comes a question: what if we only ask the neural models to accomplish certain
sub-tasks instead of doing End2End generation. In other words, if we use deep learning
in every sub-task in pipeline NLG (namely, neural pipeline NLG), then how well it can
perform compared to a fully End2End NLG system? To answer this question, Castro
Ferreira et al. (2019) conducted a systematic comparison on the WEBNLG corpus (Gardent
et al., 2017). They concluded that:

The neural pipeline approaches were superior to the end-to-end ones in most
tested circumstances: the former generates more fluent texts that better describe
data on all domains of the corpus. The difference is most noticeable for unseen
domains, where the performance of end-to-end approaches drops considerably.
This shows that end-to-end approaches do not generalise as well as the pipeline
ones. In the qualitative analysis, we also found that end-to-end generated
texts have the problem of describing non-linguistic representations that are not
present in the input, also known as Hallucination.

Faille et al. (2020) further acknowledged that neural pipeline NLG systems are more
explainable. In addition, End2End NNLG is also believed to be not good at determining
and structuring contents. Therefore, there is a recent trend on separating content planning
from the End2End NNLG (Puduppully et al., 2019a, 2019b; Puduppully & Lapata, 2021; Shao
et al., 2019; Shen et al., 2020; Z. Wang et al., 2020; Wiseman et al., 2018).

2.1.4 NLG Evaluation

NLG evaluators can be methodologically divided into two types: intrinsic and extrinsic
evaluation methods. An intrinsic evaluator evaluates an NLG system on its own regardless
of external aspects, such as the users, the environment, etc. In contrast, the extrinsic
evaluation focuses on validating whether a built NLG system is really effective on the
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offshore platform. NLG systems that are supposed to be practically deployed require
extrinsic evaluation to approve their “effectiveness”, which depends on the application
domain and the communication goal. For instance, the STOP system (Reiter et al., 2003)
aims at generating personalised smoking cessation letters in order to persuade smokers
to stop smoking. The evaluation was done by an A/B test like experiment on 2,553
smokers and compared the proportion of smokers who received the generated cessation
letters and who received nothing. Likewise, since the goal of the SaferDrive is to reduce
drivers’ dangerous driving behaviours through weekly driving reports, its effectiveness was
validated by sending generated reports to real drivers and monitoring their behavioural
change. Since the aim of this thesis is not about building a practical NLG system, this
sub-section is to be concerned with intrinsic evaluation, which can further be categorised
to automatic evaluation and human evaluation.

Automatic Evaluation

Automatic evaluation is to measure the quality of the generated text without any human
effort. One of the most famous automatic evaluators is the BLEU score (Papineni et al.,
2002). BLEU is a corpus-based evaluation metric that measures token level overlaps between
an output with references in the corpus. Concretely, it computes the n-gram precision with
a length penalty. 7 Due to the use of n-gram counts, smoothing techniques (C.-Y. Lin &
Och, 2004) are also needed against the issue of sparsity. Other word overlap based metrics
include metrics like ROUGE (C.-Y. Lin, 2004), METEOR (Banerjee & Lavie, 2005), etc.

Another commonly used type of metric is to compute the edit distance between the
outputs and references. There is a long tradition of research on computing edit distance
in computational linguistics and computer science, famous ones of which include the
Levenshtein distance, and Hamming distance. The fundamental idea behind these methods
is to count the number of insertions, deletions and substitutions required to transform the
output to the reference. However, when applying such a metric onto natural language, one
major flaw is that conducting exact string matching might underestimate the performance
of NLG systems because it failed to handle the synonyms. To solve this, Kusner et al.
(2015) proposed to leverage word embeddings when calculating edit distance, which was
further enhanced by introducing machine learning to make the evaluators trainable (e.g.,
BERTScore (Kusner et al., 2015).

All the above metrics/evaluators evaluate the quality of the generated text by computing
how likeness they are compared to the references. Nevertheless, some aspects of text
quality, such as human-likeness, coherence, diversity, fatality, do not necessarily rely on the
reference. To measure performance on these aspects, reference-free evaluators have been
proposed. For example, Mehri and Eskenazi (2020) proposed a trainable evaluator USR to
evaluate performance of dialogue systems and Hessel et al. (2021) estimated the image
captioning quality following a similar paradigm. For diversity, commonly used metrics
include DIST (J. Li, Galley, et al., 2016), i.e., computing the proportion of distinct n-grams
in the generated texts, and ENT (Y. Zhang et al., 2018), i.e., calculating the n-gram entropy
on the generated texts.

Merely computing precision (and overlooking recall) will make a metric prefer shorter outputs.
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Human Evaluation

The validity of automatic evaluators is questioned. There has been a bank of studies
demonstrating that using only automatic evaluators is insufficient for approving a system'’s
effectiveness (e.g., Belz and Reiter (2006) and Reiter (2018b)), which necessities the human
evaluation. ® Human evaluation is to ask (native) speakers to rate or rank the generated
texts from various dimensions. Common dimensions include fluency, naturalness, rele-
vance, grammaticality, readability, clarity, adequacy, diversity, and so on. Most researchers
pick 2-4 criteria from the list and which criteria to choose totally depends on the goal of
the NLG system. Popular human evaluation designs include (1) Likert scale rating: asking
participants to rate on a Liker Scale, which could consist of 2 to 10 points; (2) preference
test: asking participants to pick the output s/he prefers from 2 outputs (belonging to two
different systems); and (3) magnitude estimation: asking participants to score an output
based on a scored output.

In 2019, van der Lee et al. (2019) listed “Best Practices” for human evaluation. We hereby
summarise these best practices here. A “good” human evaluation should be conducted 1)
on a certain amount readers (the corresponding sample size and the demographics also
should be reported); 2) using 7-point Likert scales or continuous ranking (e.g., ranking
based magnitude estimation); 3) using test cases with counterbalanced/random order.
Additionally, after the human evaluation, statistical testing should be done and reported

properly.

2.2 Referring Expression Generation

Recall that, generally speaking, the task of REG is to generate a referring expression (RE) of
a referent that enables the reader to identify that referent in a given context. In accordance
with different meanings of the term “context”, the task of REG can be further divided into
two categories’:

1. REG in Context, where “context” is the linguistic context. It asks the algorithm to
produce REs for referents appear in a discourse so that the resulting discourse is
coherent and contains no referential ambiguity; and

2. Omne-shot REG, where “context” is a set of distractors. It requires the algorithm to
produce an RE for the target referent to distinguish it from distractors. Each RE is
produced individually, in isolation from any linguistic context.

In this section, we will first introduce the task, the theories, the algorithms, and the
evaluation of one-shot REG (§2.2.1) and then introduce those of REG in context (§2.2.2).
2.2.1 One-shot REG

The research of one-shot REG studies RE itself regardless of its linguistic context. This
helps us to focus more on some of the core mechanisms of reference. This line of research is
mostly about building computational production models of REs to mimic and understand

Interestingly, when BLEU score was firstly invented, it was used as a complementary of the human evaluation (Pa-
pineni et al., 2002).

Note that “context” could arguably have other meanings in regard to RE, such as the speaker’s and hearer’s
background knowledge and opinions.
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the human'’s use of REs. This is why NLG researches of this kind are called theoretical
NLG. Different from the REG in practical NLG (see §2.1), the aim of one-shot REG is
human-likeness. Most one-shot REG studies are merely about determining the content of
each RE but not about its surface form. Precisely, van Deemter (2016) defined the one-shot
REG as:

If there exists a set of properties {Py, ..., P,}, where P; € P, and where the
conjunction of all the P; in the set singles out the referent r (i.e., [P1] N [P2] N
..M [Py] = {r}), then find such a set and conjoin its elements. If no such set
of properties exists, then say so. Furthermore, make sure that {Py, ..., P, } are
collectively as similar as possible to the set of properties that human speakers
would use if they were referring to 7 in the situation at hand.

In this definition, P is an atomic property, P is a set of atomic properties in the domain,
and [P] is the set of elements that share a property P (called the denotation or extension
of P).

Gricean Maxim

One of the most vital theoretical bases of REG is the Gricean Maxims (Grice, 1975). It
provides an implementation of the idea that communication is cooperative. It contains the
following four Maxims: Quality, Quantity, Relation, as well as Manner. In what follows,
we would like to explain the details of each maxim and what each maxim means in the
context of the production of REs. Most explanations follow those in Dale and Reiter (1995),
Dale and Reiter (1996), and van Deemter (2016).

Maxim of Quality. The Maxim of Quality requires:
1. Do not say what you believe to be false.
2. Do not say that for which you lack adequate evidence.

For RE, it requires an RE must be accurate for the intended referent. In other words, for
any P;in {Py, ..., P, }, we always have r € [P;]. In most situations, no NLG system would
deliberately say something that is inaccurate (i.e., breaking the Maxim of Quality), nor does
REG. One exception is that a system could sometimes produce benign deceit, which, in
certain situations, is the most efficient way to achieve a communicative goal (van Deemter
& Reiter, 2018). Kutlak et al. (2016) figured out when referring to an object, this can be the
case if the hearer’s knowledge of the object is incorrect. For example, they showed that the
RE “the man who invented the light bulb” is the most efficient way to refer to Thomas Edison,
but the RE is not true since Edison did not invent the light bulb. In human language
production, excepting “lie”, there are two possibilities that the maxim of quality is breached.
One is when the speaker uses metonymy to ascribe a property to the referent that is not
true of the referent but of something associated with it. A classic example (Nunberg, 1978)
is that the expression “the ham sandwich is getting restless” can be used by waiters to refer to
a customer who has ordered a ham sandwich. The other is when the speaker is uncertain
about the target referent. For example, one would say “the man with the Martini” to refer
to a man who is actually with wine since the speaker was unsure whether the drink was
wine or Martini.
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ONAS

Figure 2.6: A reference game where the target is to produce an RE that can single out the
face in the middle (Goodman & Frank, 2016).

Maxim of Quantity. The Maxim of Quantity asks to:
1. Make your contribution as informative as is required.
2. Do not make your contribution more informative than is required.

This requires an RE should provide enough information to enable the hearer/reader to
identify the target referent successfully, and, meanwhile, should not include unnecessary
information. Let us elaborate on each of these two requirements separately.

REs that violate the first half of the maxim of quantity is called under-specifications.
Given the definition of the REG task, the production of under-specifications should be
avoided and most classic REG algorithms were designed to do so. Nevertheless, Frank
and Goodman (2012) and Goodman and Frank (2016) suggested that producing under-
specification is also possible if the used property is salient. For example, in order to single
out the face in the middle of the Figure 2.6, one could say:

(21)  the one with glasses

Logically, it cannot result in successful communication since there are two faces wearing
glasses. During the experiment, the majority of the readers can select the correct face given
the expression (21). This is because the readers reasoned that since the property “hat” is a
salient property in this situation (i.e., Figure 2.6), a speaker must use “hat” if s/he intended
to refer to the right face. Hence, since s/he did not use “hat”, s/he should refer to the one
in the middle.

The interpretation of the second half of the Maxim of Quantity is disputed. ' The REs
that break the second half can be roughly named as over-specifications. Over-specification is
a long-standing theme in linguists’ thinking about reference, with many contributions from
both psycholinguistics and computational linguistics. A number of possible explanations
have been proposed for the frequent occurrence of over-specification. One is the idea
that over-specification can be beneficial for hearers (Krahmer & van Deemter, 2012), for
example, because it taps into prototypes in the human mind (Levelt, 1993, Chapter 4), which
creates so-called conceptual gestalt of the target object by means of highly salient attributes
like TYPE and COLOUR. Eikmeyer and Ahlsén (1996), Pechmann (1989), and Schriefers and
Pechmann (1988) found that these salience attributes are ubiquitous in referring expressions
no matter what the distractors are. This is closely tied to the speakers’ belief that salient
attributes (which always results in over-specification) help readers to locate the referent
quickly, which firstly confirmed on the use of atomic attributes (e.g., TYPE, COLOUR or SIZE)
by Arts et al. (2011) where they compared the identification time between over-specifications
(e.g., the round button at the top left and the round white bottom) and minimal descriptions (e.g.,

10 For more discussion about over- and under-specification, please see §4.
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the button). Paraboni et al. (2007) and Paraboni and van Deemter (2014) found something
very similar, where the former suggested that over-specifying in hierarchical domain leads
to a significant reduction in the amount of search that is needed to identify the referent and
the latter indicates that over-specification may not only help the hearer but also is required
for a successful communication since minimal descriptions sometimes lead to confusion
and misidentification.

Nevertheless, Engelhardt et al. (2006), by conducting a series of eye-tracking and
ERP experiments, argued something on the opposite, that is, over-specification may be
detrimental to locating the target. They tested on some over-specified prepositional phrases
(e.g., put the apple on the towel in the box in the context consisting of one apple on a towel
and an empty towel) and showed they may lead to “temporary confusion” of the target
referent and thus slow down the identification process, which is then re-confirmed by
Engelhardt et al. (2011) on more common over-specifications as in look at red star in a
context in which there is only one star (i.e., red is over-specified). More recently, Paraboni
et al. (2017) conducted eye-tracking studies on both atomic and relational attributes. They
reasoned that the recognisability of superfluous properties matters on whether they speed
up or slow down the identification process and concluded that

Easily recognisable properties may facilitate identification, whereas properties
that are more difficult to recognise may have the opposite effect.

Maxim of Relation. The maxim of relation requires that the production of language is
relevant. Dale and Reiter (1995) provided an interpretation requiring an RE should not
mention properties that have no discriminatory power. The discriminatory power (DP) of
proper P is the number of distractors removed by P as a proportion of the total number of
distractors. Formally, suppose m € M is the set of domain elements not yet ruled out, and,
therefore, M — {r} is the set of distractors, DP is computed as:

DP(P, M) = ’[[P]];M(/fl{;}{r}”. (2.9)

It appears that the interpretation of Dale and Reiter (1995) is a relaxed version of
the requirements of the Maxim of Quantity. Concretely, for a situation where there is a
choice between properties that do not have equal non-zero DP, the Maxim of Relation
provides no preference on which one should be selected since all of them have DP larger
than zero, while the maxim of quantity suggests choosing the one with the highest DP.
Another interpretation argues that the Maxim of Relation can do the work of all the Maxims
combined (Wilson & Sperber, 2002).

Maxim of Manner The last Maxim: Maxim of Manner says:
1. Avoid obscurity of expression.
2. Avoid ambiguity.
3. Be Brief (avoid unnecessary prolixity).

4. Be orderly.
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2.2 REFERRING EXPRESSION GENERATION

Input: A domain of objects containing a target referent 7, a non-empty set of distractors, a
set P of n properties true of r.
Output: A distinguishing description D of r using conjunctions of properties in P if such
a distinguishing description exists.
1: for m in (0, n] do

2: Look for a description D that distinguishes r using m properties
3: if a description D is found then

4: return D

5; end if

6: end for

7: return “No distinguishing description of r exits”

Algorithm 2.1: The Full Brevity Algorithm

This maxim advises the language to be clear and against verbosity, (syntactic and lexical)
ambiguity as well as any kind of messiness that can make a text difficult to understand.
These aspects are mostly studied in lexicalisation, aggregation, or linguistic realisation,
but are less focused in the context of REG. In addition to the above clarity requirements,
the third rule of this maxim asks for brevity (which is also advocated by the Maxim of
Quantity). Some recent efforts have started to understand how clarity should be a trade-off
against brevity.

One-shot REG Algorithms

We review REG algorithms, from classic algorithms including the full brevity algorithm, the
greedy algorithm, and the incremental algorithm to recent advances such as the Bayesian
as well as the probabilistic approaches. For a more detailed review, please check Krahmer
and van Deemter (2012) as well as van Deemter (2016).

Full Brevity Algorithm. The first one is the Full Brevity Algorithm (FB, Dale, 1989),
which tends to find the shortest possible RE. Algorithm 2.1 describes the FB algorithm.
It starts from checking whether there is a single property of the target that rules out all
distractors. If it fails, it iteratively checks whether any combination of two properties does
this, and so on, until the referent has been singled out or until conjunctions of all possible
properties have been attempted.

Apparently, the FB algorithm takes brevity as its priority and provides a restricted
interpretation of the Gricean Maxim of Quantity, Relevance and the third rule of Manner.
However, finding the shortest RE is an NP-hard problem, and therefore, the FB algorithm
is expensive to be implemented. Therefore, later algorithms tend to either approximate
such an interpretation of Gricean Maxim or rather violate some Maxims to produce
more human-like REs (e.g., over-specifications). One simple alternative is the Local Brevity
algorithm (Reiter, 1990). This algorithm starts with an arbitrary distinguishing description'!

Distinguishing Description is an RE that can successfully single out the target referent. For a more precise
definition, please see 4.
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Input: A domain of objects containing a target referent », a non-empty set of distractors
M, a set P of n properties true of r.

Output: A distinguishing description D of r using conjunctions of properties in P if such
a distinguishing description exists.

1: D= {}

2: while M # @ and P # @ do

3 Select a new property P € P, choosing one whose descriminative power is maximal
4 if P is false of some distractors then

5: D:=DuU {P}

6 P =P—-{P}

7 M= MnN[P]

8 end if

9: end while

10: return D

Algorithm 2.2: The Greedy Algorithm

and check whether there is a short possible replacement by replacing two more properties
with a single property.

Greedy Algorithm Another approximation is to follow Johnson’s greedy heuristic (Garey
& Johnson, 1990). Building on this idea, Dale (1989) proposed to select properties one by
one and each step choose a property that does best for the referent. The Greedy Algorithm
(GR) interprets “best” as removing the maximum number of distractors, i.e., the highest
DP. Note that the GR will not always produce the shortest RE.

Algorithm 2.2 sketches the GR algorithm. It starts out with an empty description D.
Subsequently, at each step, it selects the property that has the highest discriminative power
(line 3), which should not equal zero (line 4). Once a property has been selected, it will
be added to the description D (line 5), be removed from the set of candidate properties P
(line 6), and be used for recording the removed distractors (line 7). The algorithm exits
at once either all the distractors have been removed or all the properties have been used.
Practically, both FB and GR will add the TYPE of the target referent to fill the position of the
noun. In our implementation, we always add TYPE in the very first iteration and remove
the distractors from M accordingly.

Incremental Algorithm Different from the above algorithms, the incremental algorithm (Dale

& Reiter, 1995) cares less about the Gricean Maxims but learns from psycholinguistic find-
ings. Pechmann (1989) found that perceptually salient attributes tend to be considered
before other attributes when producing REs. Such attributes could include COLOUR and
TYPE (i.e., whether the target referent is a dog or a human). In other words, some attributes
are more “preferred” than others and such a preference is intrinsic. Building on this
idea, IA selects properties one by one (i.e., incrementally) in accordance with a preference

order!?.

A preference order is a ordered list of attributes, indicting the preference of attributes. For example, a preference
order could be: COLOUR > ORIENTATION > SIZE, suggesting that COLOUR is more preferred than ORIENTATION,
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Input: A domain of objects containing a target referent », a non-empty set of distractors
M, a set A of n attributes at least one of whose values is true of , a linear preference
order defined on A.

Output: A distinguishing description D of r using conjunctions of properties in P if such
a distinguishing description exists.

1: D:= {}

2: while M # @ and A # @ do

3: Select a new property A; € A, choosing the most preferred one
4: V; := FindBestValue(r, A;)

B if V; is false of some distractors then
6: D:=DU {Vl}

7 A=A—-{A;}

8: M= MnN[Vi]

9: end if
10: end while
11: return D

Algorithm 2.3: The Incremental Algorithm

Algorithm 2.3 presents the IA. In i-th iteration, IA considers the most preferred attribute
A;j in A (line 4). Given the selected A; and the target the referent r, the FindBestValue
function selects the value that removes most distractors. The rest configurations of IA is
similar to that of the GR algorithm, both of them select properties incrementally.

In addition to the attribute salience, REG also needs to take the entity/object salience
into account. The concept of object salience has been widely discussed in relation to
“REG in context”. For example, an object is more salient if it has been mentioned in the
previous discourse (Passonneau, 1996). More discussion can be found in §2.2.2. In relation
to one-shot REG, Krahmer and Theune (2002) proposed to associate each object with a
so-called salience weight, and interpret an RE like “the man” as referring to the man with the
highest salience weight. To implement this idea, Krahmer and Theune (2002) added an
extra step at the beginning of IA (i.e., line 2 of Algorithm 2.3) that removes all elements
that have lower salience weight than r from M.

§2.1 highlighted the importance of variation in NLG, especially lexicalisation. It has
been pointed out that, in the human production of REs, variation also plays a vital role.
Nevertheless, the REG algorithms introduced so far are all deterministic. In other words,
given an input, they will always produce the same output. From now on, we move our
attention to non-deterministic REG algorithms.

Probabilistic Models. One straightforward idea is to introduce probabilities into REG
algorithms. van Deemter, Gatt, van Gompel, et al. (2012) introduced a non-deterministic
version of the IA. The idea was to un-deterministically vary the preference order of IA. For
example, the algorithm would check COLOUR before SIZE with a probability P and check
SIZE before COLOUR with the rest of the time, i.e., 1 — P.

which is more preferred than SIZE.
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Figure 2.7: An example decision tree of PRO (Figure 4 in van Gompel et al. (2019)).

More recently, van Gompel et al. (2019) noted that the non-deterministic IA produces
significant fewer over-specifications than what humans really do and, as a consequence,
they proposed a full probabilistic model, namely Probabilistic Referential Over-specification
(PRO) model, acknowledging either that the production of REs is non-deterministic or that
the production of over-specifications is frequent. Figure 2.7 provides an example decision
procedure of the PRO algorithm. As we can see, different from the non-deterministic I4,
PRO offers possibilities to continuously consider new attributes even after the target object
r has already been singled out.

Bayesian Models. Bayesian methods are believed to be good at modelling uncertainty
and, thus, modelling nondeterministic processes. In 2012, Frank and Goodman (2012)
proposed to model the production and comprehension of reference in a Bayesian framework.
They argued that the way models the production and comprehension as rational speech
acts (RSA). The RSA could be seen as a recursive reasoning procedure, which is starting
with a so-called literal speaker So(w|r,C), where C is the context. In most cases, Sy is
represented as the likelihood of the word w being chosen to refer to r in the context C:
P(w|r,C). Later efforts (e.g., Goodman and Frank (2016) and Monroe and Potts (2015))
suggested taking, the literal speaker should also consider the speech cost of using the word
w: C(w), so that the literal speaker can be expressed as a utility function:

So(w|r,C) = exp {A (P(w|r,C) — C(w))} (2.10)

With the literal speaker in hand, a pragmatic listener reasons about the intended referent r
by maximising:
So(w|r,C)P(r,C)

Li(rlw,C) = e So(w]r, C)P(r,C)’ (2.11)

where P(r,C) is the object salience in the context C.

Subsequently, the pragmatic speaker produces REs on the basis of the pragmatic
listener. There have been two strategies to model the pragmatic speaker. One is to treat the
pragmatic speaker in a similar way as the literal speaker, but replacing the likelihood term
with the literal speaker (Langner, 2020; Monroe & Potts, 2015):

Si(w|r,C) = exp {A (L1(r|w,C) — C(w))}. (2.12)
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Figure 2.8: Two scenes from the TUNA experiment, in which (a) is a situation from the
furniture domain while (b) is from the people domain.

The other is to let the pragmatic speaker also follow a Bayesian reasoning paradigm (G.
Chen et al., 2018a; Orita et al., 2015; van Deemter, 2016), in which both the object salience
and the attribute salience are considered:

_ Ly(r|lw,C)P(w,C)

S1(wlr,C) = P{r,C) , (2.13)

where L, (r|w,C) can be either a pragmatic listener (Equation 2.11), or a literal listener (i.e.,
directing estimating the likelihood P(r|w,C) from a corpus), and P(w, C) is the salience of
word w (i.e., attribute salience).

Evaluation

REG, as a content determination task (though in NLG pipeline, it is a sub-task of micro-
planning), is usually corpus evaluated. We hereby introduce the evaluation corpus (with a
focus on a specific corpus called TuNA) and the evaluation metrics.

Datasets. To assess the performance of the one-shot REG algorithms introduced in
this section, there had been a number of datasets being collected for conducting corpus
evaluation. Early examples includes the cocoNuT corpus (Gupta & Stent, 2005) and the
MaPrTAsk corpus (Bard et al., 2007). However, these corpora cannot really address the
question of how well these REG models handle the human-likeness of the REs produced
by human beings. For example, most referents in the COCONET corpus are name entities.
Subsequently, Viethen and Dale (2006) built a small scale RE dataset to assess IA, while
Viethen and Dale (2008) constructed GRE3D3 to assess REG algorithms that use spatial
relations. Here, we focus on a corpus called Tuna, which is able to conduct an exclusive
evaluation of REG content determination.

TUNA (Gatt et al., 2007; van der Sluis et al., 2007) is a series of controlled elicitation
experiments that were set up to aid computational linguists” understanding of human
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reference production. In particular, the corpora to which these experiments gave rise were
employed to evaluate REG algorithms, by comparing their output with the REs in these
corpora. The stimuli in the TUNA experiments were divided into two types of visual scenes:
scenes that depict furniture and scenes that depict people. Figure 2.8 shows an example for
each of these two types of scenes. In each trial, one or two objects in the scene were chosen
as the target referent(s), demarcated by red borders. The subjects were asked to produce
REs that identify the target referents from the other objects in the scene (their “distractors").
For example, for the scene in Figure 2.8, one might say the large chair. The trials in the
people domain were intended to be more challenging than those in the furniture domain.

The resulting corpus, which we will call ETUNA, was subsequently studied for evalu-
ating a set of “classic” REG algorithms (van Deemter, Gatt, Sluis, et al., 2012). Although
RE has given rise to a good number of other corpora, with subtly different qualities (e.g.,
Dale and Viethen (2009)), we focus here on the TUNA corpora for two reasons: firstly the
ETUNA corpus was used in a series of Shared Task Evaluation Campaign (Gatt & Belz,
2010), which caused it to be relatively well known. Secondly and more importantly from
the perspective of the present paper, ETUNA inspired a number of similarly constructed
corpora for Dutch (DTUNA, Koolen & Krahmer, 2010), German (GTuNA, Howcroft et al.,
2017), and Mandarin (van Deemter et al., 2017).

Metrics. To evaluate a REG algorithm on the constructed corpus, a metric to measure
the similarity between a generated RE and a RE in the corpus is needed. To this end,
van Deemter, Gatt, Sluis, et al. (2012) adopted the DICE metric (Dice, 1945), which measures
the overlap between two attributes sets:

2 X |DHQDA|
| Drl+ |Dal

where Dy is the set of attributes expressed in the description produced by a human author
and D, is the set of attributes expressed in the logical form generated by an algorithm.
Another commonly used metric is the “perfect recall percentage” (PRP), the proportion
of times the algorithm achieves a DICE score of 1, which is seen as an indicator of the recall
of an algorithm (in contrast to the “precision” advocated by DICE).
In addition, evaluating the performance using only DICE has certain flaws. van Deemter
and Gatt (2009) listed some of them:

DICE(Dy, Dy) =

1. DICE punishes the omission of properties from the oracle more heavily than the
addition of properties to it. For example, we have an oracle description: {A, B}. The
description { A} would receive a DICE score at 2/3 while the description {A, B,C}
receives 4/5;

2. Descriptions with higher DICE scores are not always distinguishing descriptions.
DICE metric targets at comparing sets but is blind towards the goal of a description
(i.e., singling out the intended referent);

3. DICE treats all attributes equidistant. However, van Miltenburg et al. (2020) found
that similar to the attribute salience, being incorrect on some attributes is more serious
than others. For example, when referring to a “girl with red t-shirt", saying “the boy
with red t-shirt” is worse than saying “the girl with blue t-shirt”.

More discussion about the problems of REG evaluation can be found in §4 when we
evaluate REG algorithms on Mandarin TUNA.

38



2.2 REFERRING EXPRESSION GENERATION

i | e
f
@ K

Figure 2.9: The “Referring to Sets” portion of the TUNA corpus.

Referring to Sets

There is also a line of work focusing on generating REs for a set of target objects instead of
a single one. As a matter of fact, the TUNA experiment contains trials that ask subjects to
produce REs to sets, an example of which is shown in Figure 2.9. One simple but natural
idea for designing a REG algorithm for a set of target objects is extending the IA to 1Ay,
by simply replacing the target object r with a set of target objects R. However, as pointed
out in van Deemter (2002), the following issues are yet to be addressed using 1A,

Collective Properties. It does not work for collective properties, such as “being of the same
age”. It can be solved by defining the property set P as a set with collective properties.

Negation. Negation is sometimes needed and is unavoidable (since the negated relation
is not often lexicalised), e.g., “I bought the two dogs that are not poodles”. One simple
solution is adding to P the properties whose extensions are the complements of those
in P.

Disjunction. Classic REG algorithm is also in-able to express disjunction. (i.e., set union)
which is needed when referring to sets, e.g., “the poodles and the white dogs”. One
possible solution is making use of the satellite sets, i.e., satellite set of an object r is the
set of objects from which r cannot be distinguished. However, generating REs with
satellite sets is not a kind of incremental generation.

In response to these issues, van Deemter (2002) introduced a two staged algorithm
which will run the 1A, on P and on P U P again. The algorithm was then optimised by
re-structuring the initial content determination results (a set of logical forms). Gatt and
van Deemter (2007b) designed a partitioning based algorithm, which partitions the target
object set based on the pre-defined preference order. The idea was inspired by the finding
that human beings are repeating properties in two disjuncts rather than doing aggregation.

With the increasing size of the searching space, the number of possible alternative distin-
guishing descriptions also increases dramatically. It is difficult to choose between different
distinguishing descriptions that contain combinations of Boolean operators. FitzGerald
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RefCOCO:
1. giraffe on left
2. firstgiraffe on left

RefCOCO+:
1. giraffe with lowered head
. | 2.giraffehead down

RefCOCOg:

1. an adult giraffe scratchingits

= back with its horn

. 2. giraffe hugging another giraffe

Figure 2.10: An example input image of RefCOCO corpora and corresponding REs in
RefCOCO, RefCOCO+, and RefCOCOg, respectively.

et al. (2013) tried to tackle this problem by learning a distribution over logical forms of
REs with a log-linear model. They also constructed a new dataset using the scenes from
Matuszek et al. (2012), which contains more situations with multiple targets and each
object of which has fewer attributes with more values. Other probabilistic efforts include
Monroe and Potts (2015) and X. Li et al. (2018).

When generating REs refer to sets, the problem of coherence is unavoidable as we always
tend to generate descriptions with multiple clauses. For example, if the RE “the Kenyan
animal and the tiger” and the RE “the Kenyan lion and the Chinese tiger” are both distinguishing
REs, the latter one is more probable to be chosen as the former one lacks coherence. Gatt
and van Deemter (2007a) attempted to solve this issue based on the intuition that, the word
in the RE needs to be as similar to each other as possible. Meanwhile, they also considered
that complete coherence may not be compatible with the aim of referring uniquely.

Referring Expression Modelling from Images

In the computer vision community, there is a bank of research on marrying image process-
ing with REG. One of the early attempts is Kazemzadeh et al. (2014), where large-scale
data was collected in a way called “ReferltGame”. Concretely, it is a two-player game, in
which the first player was asked to produce a RE given an image with the annotated target
object, while the second player was asked to click on the location where the produced RE
describes. At length, 130,525 REs were collected for 96,654 distinct target objects. Following
ReferltGame, three datasets RefCOCO, RefCOCO+, RefCOCOg13 were collected by L. Yu
et al. (2016). This time, in each RefCOCO* corpus, each image is associated with multiple
REs. Example image-RE pairs are shown in Figure 2.10.

Most work in this line is about RE comprehension. Not much work has been done from
the aspect of production. Analogous to text-to-text generation, work targeting generating
REs from images used the encoder-decoder architecture. As shown in Figure 2.11, the

The difference between RefCOCO and RefCOCO+ is that RefCOCO+ disallows using location words. RefCOCOg
was collected using Mechanical Turk rather than ReferIltGame.
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Figure 2.11: An encoder-decoder architecture for REG from images.

model of L. Yu et al. (2016) used a convolution neural network to encode input images and
used an LSTM to decode REs. To boost the performance, L. Yu et al. (2016) proposed to
encode all objects in an image and decode all REs for them simultaneously. More recently,
inspired by the idea of RSA, L. Yu et al. (2017) and Mao et al. (2016) suggested modelling
RE generation and comprehension jointly.

2.2.2 REG in Context

Different from the one-shot REG, the task of REG in context is concerned with the genera-
tion of REs in discourse context. Belz and Varges (2007) phrase it as follows:

Given an intended referent and a discourse context, how do we generate
appropriate referential expressions to refer to the referent at different points in
the discourse?

For example, here is a description from the Wikipedia entry of Joe Biden:

(22)  Joseph Robinette Biden (born November 20, 1942) is an American politician who is
the 46th and current president of the United States. A member of the Democratic
Party, he served as the 47th vice president from 2009 to 2017 under Barack Obama
and represented Delaware in the United States Senate from 1973 to 2009.

The input of a REG in context system is the above text where all the underlined text is
missing. The goal of the system is to generate all these missing REs given which referent
each slot is for.

Pipeline REG

Classic REG in Context was usually understood as a two-step procedure (i.e., a pipeline).
At the first step, the referential form (RF i.e, the syntactic type) is determined. For instance,
when referring to Joe Biden at a given point in a discourse, the first step is to decide
whether to use a proper name (“Joe Biden"), a description (“the president of the USA"), a
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demonstrative (“this person") or a pronoun (“he"). The second step is to determine the
RE content, that is, to choose between all the different ways in which a given form can
be realised. For instance, to generate a description of Joe Biden, one needs to decide
whether to only mention his job (e.g., The president entered the Oval Office.), or to mention
the country as well (e.g., The president of the United states arrived in Cornwall for the G7
Summit.)

At the second step, the content of the RE is usually determined by a rule-based system
in accordance with the decided referential form as well as the referents” meta-information.
For example, if the intended referent is a singular referent, is a human, and is a male, then,
when the referential form is a pronoun, it is realised as “he”.

A common solution for the first step (i.e., referential from selection) is using feature-
based machine learning models (see Belz et al. (2010) for an overview). In earlier works,
computational linguists linked REG to linguistic theories and built referential form selectors
systems on the basis of linguistic features. For example, Henschel et al. (2000) investigated
the impact of 3 linguistic features namely recency, subjecthood, and discourse status on
pronominalisation, i.e. deciding whether the RE should be realised as a pronoun. Using
these features, they used the notion of local focus as a criterion for detecting the set of
referents that can be pronominalised. This task has attracted many research efforts (e.g.,
Greenbacker and McCoy (2009) and Hendrickx et al. (2008)) and it has been used in
the GREC shared tasks (Belz et al., 2010). Most recently, G. Chen et al. (2021) explored
possibilities of using deep learning techniques to directly encode the input context (without
doing any feature engineering). Next, we will review the factors that would influence the
choice of referential form (which are, therefore, used in feature-based models).

Factors that influence the Selection of Referential Form

Languages display a large inventory of expressions for referring to entities (von Heusinger
& Schumacher, 2019). In linguistics, the realisation choice a speaker makes has been
associated with accessibility, i.e. activation of mental representations of a referent at a
particular point in discourse: attenuated forms such as pronouns are often used to refer
to highly accessible or highly activated referents, while richer forms such as descriptions
and proper names are employed in referring to less accessible ones (Ariel, 1990; Gundel
et al., 1993). Due to the central role of referring in communication, a wealth of research has
tried to assess the influence of different features modulating the accessibility of a referent.
von Heusinger and Schumacher (2019) refer to these features as prominence-lending cues,
meaning that they increase the prominence status of their respective referents to some
extent.

Referential status or givenness has been widely discussed in the literature (see Chafe
(1976) and Prince (1981)). When a new character is introduced into the discourse, the
chance that this happens by means of a pronoun is slim (unless the referent is situationally
given). Pronouns are reserved for referring to previously introduced (or given) referents.

Recency, another well-studied cue, is defined as the distance between the target referent
and its antecedent. If a referent is not too far apart from its antecedent, then reduced forms
are typically employed to refer to it. When used as a feature in referential form selectors,
recency is optimally measured in terms of the number of sentences (Same & van Deemter,
2020).

There are also intra-clausal cues such as grammatical role (Brennan, 1995) and thematic role
(Arnold, 2001) which impact the prominence status of referents. For instance, the subject
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Triples:

(AWH_Engineering_College, country, India)

(Kerala, leaderName, Kochi)
(AWH_Engineering_College, academicStaffSize, 250)
(AWH_Engineering_College, state, Kerala)
(AWH_Engineering_College, city, “Kuttikkattoor”)
(India, river, Ganges)

Text: AWH Engineering College is in Kuttikkattoor, India in the state of Kerala. The school
has 250 employees and Kerala is ruled by Kochi. The Ganges River is also found in India.

Delexicialised Text:

Pre-context: AWH_Engineering_College is in “Kuttikkattoor” , India in the state of Kerala .
Target Entity: AWH_Engineering_College

Pos-context: has 250 employees and Kerala is ruled by Kochi . The Ganges River is also found
in India .

Table 2.1: An example data from the webNLG corpus. In the delexicalised text, every entity
is underlined.

of a sentence is perceived to be more prominent than the object so that the referent in the
subject position has a higher tendency to be pronominalised. Note that the grammatical
role of both the antecedent and the current mention does matter.

Discourse-structural features affect the organisational aspects of discourse. Centering-
based theories Grosz et al., 1995 often use the notion of local focus to account for pronomi-
nalisation. Local focus takes the current and previous utterance into account. Global focus, on
the other hand, situates a referent in a larger space, namely the whole text or a discourse
segment (Hinterwimmer, 2019). Concepts such as the importance of a referent or familiarity
are associated with the global prominence status of entities (Siddharthan et al., 2011).

Animacy also plays an important role. Fukumura and van Gompel (2011) reported that
pronouns were more frequent for referring to animate than inanimate referents.

End2End REG

More recently, this two-step procedure was formulated into a format that goes together
well with deep learning: Castro Ferreira, Moussallem, Kadar, et al. (2018) introduced the
End2End REG task, built a corresponding dataset based on webNLG (Gardent et al., 2017),
and constructed NeuralREG models.

WebNLG Corpus. The webNLG corpus was originally designed to assess the perfor-
mance of NLG systems (Gardent et al., 2017). Each sample in this corpus contains a
knowledge base described by a Resource Description Framework (RDF) triple (Table 2.1).
Castro Ferreira, Moussallem, Kadar, et al. (2018) and Castro Ferreira, Moussallem, Krahmer,
et al. (2018) enriched and delexicalised the corpus to fit the REG in context task. Table 2.1
shows a text created from an RDF and its corresponding delexicalised version.

Taking the delexicalised text in Table 2.1 as an example, given the entity “AWH_Engineering
_College”, REG chooses a RE based on that entity and its pre-context (“AWH_Engineering_College
is in “Kuttikkattoor”, India in the state of Kerala . ") and its pos-context (“has 250 employees and
Kerala is ruled by Kochi . The Ganges River is also found in India .”’).
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[ Decoder J

Figure 2.12: The general architecture of the NeuralREG model (Castro Ferreira, Moussallem,
Kadar, et al., 2018).

NeuralREG Model. The NeuralREG model is indeed a Seq25eq model, where the encoder
is of encoding the given discourse and the referent while the decoder is of generating the
RE. The model proposed by Castro Ferreira, Moussallem, Kadér, et al. (2018) has three
encoders: a pre-context encoder, an entity encoder, and a pos-context encoder. Formally,

for each k € [pre, pos], the model encode x¥) to h®) with a LSTM:
h®) = LsT™M(x®)). (2.14)

These hidden representations are then used for computing the context representation at
each decoding step using the attention mechanism (see §2.1.2 for more details), which
results in cpre and cpos. At each decoding step, the overall contextual input is the concate-
nation of the referent representation v, as well as cpre and cpos.

Unseen Referents. One major issue of the NeuralREG model is that it requires all refer-
ents in the test set have to also appear in the training set; consequently, the trained models
fail to handle unseen referents. Recently, Castro Ferreira et al. (2019) extended the WEBNLG
to include also unseen entities. Cao and Cheung (2019) and Cunha et al. (2020) developed
new models to handle them. Concretely, Cao and Cheung (2019) suggested incorporating
the Wikipedia data when generating REs. In this way, for unseen referents, the model could
acquire corresponding knowledge (mostly text-based) from Wikipedia. One year later,
Cunbha et al. (2020) proposed to directly make use of the meta-information (e.g., gender
and animacy of the referent) extracted from Wikipedia and to use copy mechanism (Gu
et al., 2016) to further boost the performance of REG for unseen referents.

2.3 Quantification

In the previous section, we were concerned with one type of NPs, like “the child” and “Joe
Biden”, which are responsible for referring. This section focuses on another type of NPs,
such as:

(23) a. some children
b. a few children

each of which contains a quantifier. Expressions as such are called Quantified Expressions
(QEs). We introduce either the fundamental theories for quantification or computational
models for understanding and producing QEs.

44



2.3 QUANTIFICATION

A B A B

Figure 2.13: The venn diagram of all (left) and no (right). The shadow areas are empty sets.

2.3.1 Theories of Quantification

Two theories that closely tie to work in this thesis are the Generalised Quantifier theory
and the Scalar Implicature theory.

Generalised Quantifier

A long tradition of research in the formal semantics of natural language asks how speakers
quantify, as when we say “Some A are B”, “All except two A are B”, “Only a few of the A
are B” and so on. This area of work is known as the theory of “Generalised Quantifiers”
(GQ) (Peters & Westerstahl, 2006, GQ), because it generalises the idea of quantification
beyond the standard logical quantifiers of ¥V and 3, even including quantifiers like “most” or
“many”, which are not expressible in First-Order Logic (Barwise & Cooper, 1981; Mostowski,
1957; Peters & Westerstahl, 2006; van Benthem et al., 1986).

The concept of GQ has rooted in Frege as well as Aristotle. It was then mathematically
formulated by Grice (1975) and was first applied to natural language by Barwise and
Cooper (1981). It is based on a general idea that the semantic values of most QEs in natural
languages are relations between sets. For instance, for a QE:

(24) Every student in this classroom wears glasses.

It mentions two sets: one is the set of students in this classroom, and the other is the set of
people who wear glasses. This QE uses the quantifier every to express that the former set is
a subset of the latter one.

Formally, GQ theory suggests that suppose we have a quantifier Q of the type (1,1)
as well as two sets A, and B, which are subsets of the universe of discourse M. A QE
Q(A, B) describe a relation between A and B. With this methodology in hand, we can
define semantics of many quantifiers in natural language. For example,

14

(25) every(A,B) < ACB
some(A,B) & ANB # @
most(A,B) < |ANB| > |A— B|

at least three(A,B) < |[ANB| <3

anr o

14 Indeed, in GQ theory, Q can be of any type (11, 1y, ..., ). Here, we use the (1,1) type for simplicity.
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The GQ theory also allows us to represent the semantics of quantifiers in Venn Diagrams.
Figure 2.13 provide examples for the QE all(A, B) as well as the QE no(A, B)). More
specifically, all(A, B) is saying the shadow area on the left is an empty set, while, no(A, B))
expresses the shadow area in the middle is empty.

Restricted Quantifiers. All quantifiers in the above examples are so-called restricted
quantifiers since they range over their first inputs. For example, in (24), the quantifier every
is ranging over the set students.

In contrast, there are also unrestricted quantifiers. They appear in two possible forms.
One is the type (1) quantifiers. For example, the QE Everything(A) means A is a subset of
the universe M, suggesting that it is ranging over the universe rather than restricted by A.
The other is the QEs like more(A, B), which is formally defined as:

(26)  more(A,B) < |A| > |B|

It is not restricted by A, in cases where A and B do not overlap, e.g., “there are more dogs
than cats”.

The concept of restricted quantifiers is closely tied to the concept of Conservativity.

Conservativity. For a restricted quantifier, the following two examples are semantically
equivalent:

(27)  a. Every student wears glasses.
b. Every student is a student who wears glasses.

This phenomenon is called conservativity. Formally, it says,
(28) for each A, B C M, we have Q(A,B) & Q(A, ANB).

It expresses restrictness. In other words, it indicates that the truth of (27-a) only depends on
elements in A. Conversely, more(A, B), as an unrestricted quantifier, does not follow this
pattern, because the corresponding feature |A| > |B| < |A| > |A N B| is easily falsified.

Universe-restricting and Extensionality. A stronger notion of restrictness is saying that
the only thing that can matter to a restrict quantifier is A. In other words, it suggests that
Qum (A, B) P is the same as Q4 (A, B). Formally, we have

(29) for each M and each A, B C M, we have Q((A,B) < Qa(A,ANB).

The principle of extensionality (van Benthem, 1983) indicates the difference between the
conservativity and universe-restricting:

(30)  foreach A,B C M C M, we have Qr((A, B) & Qv (A, B).

Extensionality also says that the semantics of quantifiers do not change with respect to the
change of domains they are in.

We use footnote M to indicate that Q is of the relation between subsets of M.

46



2.3 QUANTIFICATION

Monotonicity. A quantifier Q(A, B) is an upward monotone if and only if the following
holds:

(31)  if BC B, the Q(A,B) — Q(A,B')

Quantifiers such as all and most are upward monotone. For example, in the following
example, (32-a) entails (32-b).

(32) a. all students wear black glasses
b. all students wear glasses

Conversely, a quantifier Q(A, B) is a downward monotone if and only if the following
holds:

(33) if BC B, the Q(A,B') — Q(A, B)

Quantifiers including no and few fall in this category. For example, in the following example,
(34-b) entails (34-a).

(34) a. No students wear black glasses
b. No students wear glasses

Scalar Implicature

Scalar Implicature is an implicature of the implicit meaning of a QE. In other words, beyond
the semantics of QEs, studies about scalar implicature are interested in the pragmatics QEs.
For example, when we say:

(35)  Some students wear glasses.

the use of some gives rise to an implicature that “not all students wear glasses” .

Theories have been proposed to interpret such a phenomenon. One is to interpret
these implicatures in terms of the Maxim of Quantity (Horn, 1972; Levinson et al., 2000).
Concretely, the idea is that, for the above example, if the speaker was in a position to make
a stronger statement (i.e., “all students wear glasses”), s/he would have. However, since s/he
did not, the strong statement must be wrong. Such an account is based on the existence
of lexical scales. For example, the above example covers the lexical scale (some, all). The
stronger term (all) implies the weaker term (some), whereas the weaker term implies the
negation of the strong term.

The other denies any role of lexical scalars and views the scalar inference as a contextual
process (Carston, 2008; I. Noveck, 2007; Sperber & Wilson, 1986). Specifically, it says the
implicature is constructed through a contextual driven ad-hoc concept construction process
rather than a lexically based process.

So far, a plethora of empirical work has been done for collecting psychological evidence
for each of the above accounts (Bott et al., 2012; Bott & Noveck, 2004; de Carvalho et al.,
2016; Dupuy et al., 2016; Feeney et al., 2004; Hartshorne et al., 2015; I. A. Noveck, 2001;
Papafragou & Musolino, 2003; Papafragou & Tantalou, 2004; Pouscoulous et al., 2007;
Teresa Guasti et al., 2005).
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2.3.2 Computational Models

There has been work on computational modelling of both understanding and producing

QEs.

Understanding Quantifiers

Computational models were built to answer the research question of “If a given quantified
expression is uttered, what information does it convey”? In this line of work, some work conducts
empirical studies for investigating the meaning of quantifiers. For instance, Yildirim et al.
(2013) investigated speakers’ use and hearers’ interpretation of the quantifiers some and
many. Concretely, each participant was given a set of scenes, and, for each scene, the
participant was asked to choose from either using some or using many. They found that
many generally represents more quantity than some. In a similar vein, Herbelot and Vecchi
(2015) looked at no, all, most, some, and few. Whereas, I. Sorodoc et al. (2016) focused on no,
some, and all.

It has been evidenced that hears interpret quantifiers probabilistically (Degen & Tanen-
haus, 2011; van Tiel, 2014; Yildirim et al., 2013). Probabilistic models like the Rational
Speech Acts model (see §2.2 for more detail) have been used for modelling the meanings
of quantifiers. For instance, Carcassi and Szymanik (2021) used RSA to model and compare
the meanings of most and more than half.

Additionally, there is also a bank of work that focuses on disambiguating quantifier
scopes. Hobbs and Shieber (1987), Saba and Corriveau (1997), and Srinivasan and Yates
(2009) accomplished this task using rule-based systems. Later on, Attali et al. (2021)
proposed to use RSA instead.

Producing Quantifiers

As an NLG task, there is work on generating quantifiers in either practical terms or
theoretically.

Modelling the Quantifier Use. In practical terms, quantifiers, especially vague quanti-
fiers, play important role in NLG when generating descriptions for time series, locations
and so on. Yager (1982) argued that descriptions of information of numerical data are usu-
ally based on the concept of fuzzy (vague) quantified statement, such as “a few researchers are
young” and “most of the cold days were very humid”. Following this idea, Ramos et al. (2019)
propose to use fuzzy logic to produce geographical descriptors that involve quantifiers
(four quantifiers were considered: few, some, many, and most), e.g., “many locations in the
extreme north are overcast” or “some locations in the extreme north are partly cloudy”. In
a similar vein, Kacprzyk et al. (2008) introduced vague quantifiers in the generation of
summaries of time series.

Theoretically, works such as Franke (2014) and Qing (2014) built probabilistic speaker
models for these two quantifiers, i.e., some and many, based on the RSA model. More
recently, Pezzelle et al. (2018) formalised a cloze test based quantifier selection task, where
they asked deep learning-based models to predict which quantifier is used in a given
context.
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Generating Quantified REs. Referring expressions that contain quantifiers is called Quan-
tified Referring Expression (QRE), such as “the crate with 10 apples” and “the crate with
many apples”. Generating expressions as such are called Quantified Referring Expression
Generation (QREG) On the human production of QRE, Barr et al. (2013) concluded that
if the quantity (of the target items) is subitizable, people prefer numerical expressions
(e.g., “10 apples”), because they come naturally to either speakers or listeners (Green &
van Deemter, 2011). Additionally, people are more likely to use vague quantifiers (e.g., few
and many) for contexts where the gap between the target quantity and the quantities in
the distractors is large.

To algorithmically generate QREs, building on the above findings, (Briggs & Harner,
2019) proposed to use a method called Perceptual Cost Pruning, assuming that the higher
the gap (between the target quantity and the quantities in the distractors) is the more
the perceptual cost is. It models human QRE by 1) starting with a complete symbolic
knowledge base representing the visual scene; 2) removing facts from the input knowledge
base based on a model of the time cost of exact enumeration; 3) using IA on this reduced
knowledge base.
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CHAPTER 3 I

Challenges for Mandarin NLG

There is a long tradition of linguists classifying languages in the world, resulting in a
research subject, namely, linguistic typology. To explain the specificity of Mandarin Chinese,
we introduce three classifications that might be related to building Mandarin NLG systems.
In this way, we provide a theoretical basis of potential challenges introduced by Mandarin.
Specifically, these classifications include the cool-hot division (§3.1), the analytic-synthetic
division (§3.2), as well as the linear-circular division (§3.3). Mandarin Chinese has been
proved to be a cool, analytic, and circular language. Since the phenomena related to
these characteristics happen in all Chinese languages, we use the term “Chinese” when
introducing them (i.e., from §3.1 to §3.3). Meanwhile, we briefly introduce the grammar
of Chinese accordingly. For a more detailed introduction of the grammar of Chinese NPs,
please check Appendix A. Next, in §3.4, we enumerate possible challenges introduced
by Mandarin at each stage of NLG pipeline. Since this thesis is all about challenges in
Mandarin NLG, we use the term “Mandarin” in that section.

3.1 Coolness

In 1982, Ross (1982) suggested to classify languages following the “hot-cool” division
of the media (McLuhan, 1964). A media is considered as “hot” if its communication
process contains limited or no audience participation, while “cool” means that audience
participation is required to be active. Likewise, Ross suggested that languages can also
be classified on the basis of the explicitness with which they express certain elements.
C.-T. J. Huang (1984) elaborated it as:

A language is “hot” if the information required to understand each sentence
is largely obtainable from what is overtly seen and heard in it. A language is
“cool” if understanding a sentence requires some work on the reader’s or the
hearer’s part.

The original metaphor of “coolness” was proposed with regards to the use of anaphora. In
this sense, English is a “hot” language because English pronouns cannot, in general, be
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omitted while Chinese is “cool” since such pronouns are usually omittable and are often
more naturally omitted. For example, in a dialogue, if a speaker says:

B6)  FR=FNW FW T 5 ?
zhangsan kanjian lisi le ma?
Did Zhangsan see Lise yesterday?

In English, except saying “Yes, he saw him”, none of the followings are acceptable (where e
represents a omitted pronoun):

(37) * Yes, e saw him.

* Yes, him saw e.

* Yes, e saw e.

* Yes, I guess e saw e.

* Yes, John said e saw e.

©an o

Conversely, Chinese, as a “cool” language regards all the followings as acceptable:

(38) a. eBMNAMHT o

kanjian ta le
[He] saw him.

b. fENe T -
ta kanjian le
He saw [him].

c. eEFEMeT -
kanjian le
[He] saw [him].

d FHEeBEMe-
wo cai kanjian le
I guess [he] saw [him].

e. K=UleFEle-
zhangsan shud kanjian le
Zhangsan said [he] saw [him].

The contrast in acceptability suggests that Chinese has larger freedom for the use of zero
pronouns (ZPs) than English.

There are two different types of ZPs. One is the PRO, which is a pronominal anaphor.
PRO is universal across languages, and, therefore, it appears in both Chinese and English.
It is always placed in the subject position of a non-finite clause, for example:

(39) He wants PRO to become a millionaire.

The other is pro, which is a pure pronominal and is not universal across languages (it does
not appear in English), such as the example (38). It can either be recoverable, e.g., referring
to the speakers or its antecedents (namely, Anaphoric Zero Pronoun), or be irrecoverable
when pro is in existential sentences, idiomatic expressions, or it refers to a specific entity or
event.
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Subsequently, van der Auwera and Baoill (1998) pointed out that the concept of “cool-
ness” in language science does not only cover anaphora. It can be interpreted in a way
that covers a lot more categories that are not expressed obligatorily if they are obvious
enough from the intra-linguistic or the extra-linguistic context. Both of the two fundamental
categories in Chinese (i.e., noun and verb) could be related. For nouns, as introduced in
Appendix A, a bare noun in Chinese can be either definite or indefinite and either singular
or plural. In other words, given a bare noun, its definiteness as well as plurality need to be
inferred from its context. Consider the following examples of the noun “J4” (gou; dog):

(40) a.  JIIREEEH
gou hén congming
Dogs are intelligent.
b. HEE-
wo kan dao gou
I saw a dog/dogs.
o JHHET .
gou pao zou le
The dog(s) ran away.

The word “#i]” in the sentence (40-a) makes a general reference and, thus, is translated
as “dogs”. In the sentence (40-b), the “#i” is an indefinite noun, but whether it refers to a
single dog or a set of dogs needs to be decided by wider contexts. Likewise, the plurality of
the “J” in the sentence (40-c) is also hard to be decided without further information, but,
certainly, it is definite. For verb, Chinese verb phrases accept zero aspect markers (C.-T. J.
Huang, 1987). For example, the Chinese sentence “FZ221%” (wd qut xuéxiao) could either
mean “I am going school” or “I go to school”. To understand the exact meaning, wider
contexts are needed.

Putting this hypothesis in the context of NLG, it links to the concept of the clarity-
brevity trade-off in NLG. Recall that, in Gricean Maxims, both the maxim of quantity
and the maxim of manner require the production of language to be clarity and brevity.
Nevertheless, in practical terms, there is a trade-off between them since reductions in
ambiguity are achieved by increases in length. Building on the existence of such a trade-off,
Zipf (2016) hypothesised that individuals maintain an efficient balance between over-
and under-specifying in an intended message. In NLP such a phenomenon has been
explored /discussed in the context of REG (Khan et al., 2006) and lexical choice (Pimentel
et al., 2020). Interestingly, it has been suggested that East Asian languages handle the trade-
off between brevity and clarity differently from those of Western Europe (e.g., Newnham
(1971)). Pimentel et al. (2020) concluded that, at least for lexical choice, such a trade-off is
language-dependent, some languages prefer clarity over brevity whereas some languages
prefer brevity over clarity. ! Based on this idea, we could imagine that the coolness
hypothesis might suggest that the Chinese would prefer brevity over clarity in such a
trade-off and a Chinese NLG system should be able to capture this.

In addition, since many elements (e.g., definiteness marker, plural marker, pronoun
and aspect marker) in Chinese are optional in some circumstances, there could be multiple
ways (i.e., omit or not omit these elements) to express the same meaning. Although
both omitting them and not omitting them are grammatical and acceptable, as C.-T. J.

1 Unfortunately, the corpus study in Pimentel et al. (2020) excludes Chinese.
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Huang (1984) pointed out, one of them is often more pragmatically natural than the other.
Therefore, another general challenge posed by the “coolness” hypothesis is how to choose
the pragmatically natural one from multiple alternatives.

3.2 Analyticity

Another classic classification in linguistic typology is the “analytic-synthetic” division.
Concretely, analytic languages express concepts using independent words while synthetic
languages use inflected words for the same purpose. Simply put, analytic languages have
no or very few inflectional morphemes while synthetic language uses a lot. Given this
criterion, German, Latin, Russian, as well as ancient English are all synthetic languages.
Chinese and Modern English are both analytic languages, but Chinese is more analytical
than English.

Chinese is a language that has no inflectional morpheme and, as a trade-off, it needs
more syntactic rules than synthetic languages and other less analytical languages (e.g.,
English). To see in which way Chinese is analytic and why Chinese is more analytical than
English, consider the following example:

41) ER=MPRHEART .
zhangsan de dou ldi le
All Zhangsan's friends has come.

Although modern English has much fewer inflectional morphemes than synthetic lan-
guages, it is still weakly inflected. In this specific example,

1. Chinese uses a particle “[]” to mark possession (“5Kk= HJ JiX”), while English uses
a bound morpheme “-’s” in the form of a clitic (“Zhangsan’s friends”);

2. Chinese use a bare noun “fi/X” which express plurality in an implicit way, while
English uses a bound morpheme “-s” to form a plural noun “friends”;

3. Chinese use a particle “ | ” as a perfective marker in this sentence, denoting the
friends "has come".

Note that Chinese has a great number of derivational morphemes. For example, the

compound of “41.” (héng; red) and “f£” (hua; flower) is “41.48” (hénghua; saffron crocus).
Please see Packard (2000) for more details.

3.3 Circularity

Languages can also be classified using a so-called “linearity-circularity” division (Kaplan,
1966). This idea considers English a linear language while considers Chinese a circular
language because Mandarin speakers prefer using indirect expressions. This is based on
the idea that the discourse pattern of English is linear, direct, deductive, and logical while
that of Mandarin is inductive, indirect, and non-linear. Real or purported evidence was
identified in sales letters. For example, Campbell (1998) found that English sales letters
address directly the point in the headline of the letter whereas Chinese sales letters mention
something seemingly irrelevant. For instance (in English; from Yunxia (2000)):
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(42) a. Headline: Introducing the only credit card to give you $60 to spend on
Innovations - FREE!
b. Greetings: How are you? You must be very busy with your work.

Later on, L. Yang and Cahill (2008) compared the essays written by Mandarin and English
speakers and checked the place of thesis statements (i.e., the sentences that express the main
idea of essays). They found 86% of the English native speakers placed thesis statements in
the initial sentence while merely 66% of the Mandarin speakers did the same.

This is because of the, real or purported, Chinese speakers’ preference in being “round-
about”. This, in part, builds on an old saying from Confucian: “a word uttered by a gentleman
cannot be taken back, even by a team of four horses”. In other words, Chinese speakers are
eager to be “implicit” and “indirect”. For example, if a Chinese speaker is asked to do
something that s/he cannot do, instead of directly saying “no”, s/he prefers saying “It "s
not convenient for me today” because it is less negative and more likely to avoid conflicts.

Regarding circularity, there are two possible interpretations. One links circularity to
the theory of Hall (1989) where cultures are divided into high context cultures (e.g., China,
Japan, and Korea) and low context cultures (e.g., United States, Australia, and New Zealand).
High context cultures are cultures whose rules of communication rely heavily on contextual
elements, such as body language, a person’s status, and tone of voice. Due to globalisation,
communications these years are often cross-cultural. The communication style in a high
context culture appears to be indirect to someone from low context cultures (Yunxia, 2000).
The other interpretation views circularity as a kind of politeness since indirect utterances
are often more polite than direct utterances because the former can offer more options for
the addressee (Leech, 2016).

The first interpretation appears to link the idea of circularity to the idea of coolness. On
the one hand, circularity, in line with coolness, also leads a language to breach clarity (in
order to be indirect). On the other hand, it is in contrast to coolness, which hypothesises
Mandarin speakers preferring brevity, since, to be indirect, speakers sometimes need to
speak more.

In response to circularity, Chinese NLG systems might need to adapt their communica-
tion goal and the way how a generated discourse is structured. Note that since circularity
does not affect the Noun Phrase, it’s not a topic for this thesis

3.4 Challenges

We hereby list the potential challenges in accordance with the NLG pipeline.

3.4.1 Content Determination

We believe content determination is less language-dependent. > For example, when
building a system that generates biographies from a knowledge base, the generated texts
are mostly in a form like “Joseph Robinette Biden Jr. is an American politician who is the 46th
and current president of the United States ...” regardless of languages.

One issue that needs to be aware of is ellipses. For instance, the following dialogue is
an interaction between the EasyNav system (developed by Y. Huang et al. (2001) aiming at
introducing the campus of Tsinghua University to their new students) and a real user:

2 Note that the content determination of REs will be discussed later.
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(43)  USER: iF[H] iTHALAR 2245 AR WRE?
qingwen4 jisuanjixi xuésheng zhtizai nali
Can I ask where is the accommodation for students of the Computer Science
Department?
EasyNav: 9 5%
9 haolou
Building No.9.
USER: [ff3L #F5 Wt &at?
fujin douyou naxié shitang
Are there any refectories nearby?
EasyNav: £ /\ JL B4 -
gl ba jit shitang
Refectory No.7, No.8 and No.9 [are near here]
USER:BF 1~ Sl ?
nage zuihao
Which [one] is the best?
EasyNav: ...

In the second turn, although the user simply asked about refectories nearby, pragmatically,
s/he actually meant refectories near building number 9. In a similar vein, in the next turn,
s/he meant “which refectory near building number 9 is the best”, but both “refectory” and “near
building number 9” are omitted. Indeed, ellipsis also appears in other languages, including
English, but their uses are different. Osborne and Liang (2015) figured out that, in addition
to ZP, noun ellipsis, such as those omitted nouns in the above dialogue session, is less
restricted and, thus, more frequent in Mandarin than in English. Meanwhile, some other
types of ellipsis such as “sluicing” happen only in English. This said, the macro-planner >
in a Mandarin NLG system needs to handle ellipsis differently from English NLG systems.

3.4.2 Document Structuring

Apparently, the aforesaid issue of ellipsis also matters in the stage of content structuring
as most previous work suggested performing ellipsis (for English) when managing the
content structure (e.g., using Rhetorical Structure Theory (Theune et al., 2006)).

Besides, there are also other challenges. First, regarding circularity, empirical studies
(e.g., L. Yang and Cahill (2008)) are mainly about essay writing. It is interesting to
conduct extensive studies on other aspects in human language production to ascertain
such a hypothesis (i.e., Chinese is a circular language) and to investigate to what extent
it influences the use of language as well as the design of the NLG system. If confirmed,
it requires the document structuring of a Mandarin NLG system to be able to manage
the information in a circular way. For example, it may sometimes not place the topic
sentence at the very beginning. Second, the position and order of Mandarin discourse
markers are very fluid. Syntactically, they can be placed in any of the initial positions, the
predicate-initial position, and the final position. In contrast, English uses them in a more

We use the term “macro-planner” because some studies (e.g., Theune et al. (2006)) suggested that ellipses are
better to be handled during Document structuring.
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fixed way, where the discourse makers are mostly in the initial position (Y. Li, 2008). Third,
many discourse makers are also omittable. For the sentence

(44)  Because he was ill, he did not go to school yesterday.

Literally, its Mandarin translation needs to use the discourse marker “[K[y ... FfLL ...”
(yInwéi ... sudyi ..., because ... so ...). However, all of the following expression are acceptable
and are expressing the same meaning:

45) a MhUHT, Ok LR
ta bingle, méi lai shangke
b. MRy R T, Bk B
ta yinwéi bingle, méi 14i shangke
o MENHE T, BrLl(fb) &k LR -
ta ynwéi bingle, sudyi (ta) méi lai shangke
d. M T, PPl Ak Bif o

ta bingle, sudyl méi 14i shangke

The evidence towards the last two points is coming from a corpus study (Y. Li, 2008) aiming
at reminding machine translation researchers to be aware of these issues. There has no
empirical study to approve, for example, Mandarin has more freedom with respect to the
choice of discourse markers than English. Therefore, they (i.e., the above two points) are
both worth further investigation. If they are both true, then they will raise new challenges
for document structuring in Mandarin on deciding the position, the order, and even the
existence of discourse markers to make the resulting document more pragmatically natural.

3.4.3 Aggregation

On the basis of the coolness hypothesis, one could expect that Mandarin speakers would
use more aggregation either semantically or syntactically, in order to shorten the length
and reduce the speech cost. On the one hand, this asks the aggregators to be more active
in Mandarin NLG systems. On the other hand, since the definiteness and plurality in
Mandarin could be expressed implicitly, an aggregation might introduce ambiguities. This
said aggregators should be aware that ambiguities as such might result in unsuccessful
communications.

3.4.4 Lexicalisation

During lexicalisation, on the one hand, one could expect that Mandarin NLG systems need
to make more decisions at this stage compared to English NLG systems. These additional
decisions come from:

* Optional elements: definiteness markers, plural markers, and aspect markers are
all optional in some circumstances. Omitting them properly would improve the
human-likeness/naturalness of the generated texts;

* Synonyms: in addition to the traditionally understood “synonyms” (i.e., words that
have similar or the same meaning), 80%-90% of Mandarin words can be expressed by
either a short form or a long-form, such as “J£ /%" (hti/1aohw; tiger) and “J& /7
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J&” (dian/shangdian; shop). It is crucial for a Mandarin NLG system to choose the
correct form, which sometimes highly influences the naturalness of the outputs. For
example, in the following example, filling the missing word with either “J&” or “Fj
J&"” always means “shop” and is grammatically correct, but using “J&” will result in a
more natural sentence.

(46) b k£ ARl B 0o A SRR .
ta qu ribén liiy6u shi, bi guang gezhdng midnshui
When travels to Japan, she must go duty-free .

Initial analysis of such a problem using language modelling tools can be found in L.
Li et al. (2020), L. Li et al. (2019). Literature in linguistics (e.g., Arcodia and Basciano
(2017)) suggests that, different from the long forms, most short forms are bounded
morphemes so that they cannot independently occupy a syntactic slot and have to be
combined with other words (e.g., %% (duty-free) in the above example).

On the other hand, since predisposing brevity might breach clarity, we expect there are
more vague words in Mandarin texts in terms of either frequency or variety. It might also
be connected to the aforementioned idea of being roundabout, which can be achieved by
being vague and ambiguous. This suggests that, when building Mandarin NLG systems,
we need to pay more effort into modelling the meanings of vague terms before producing
them.

3.4.5 Referring Expression Generation

We discuss the challenges for one-shot REG and REG in context respectively. Regarding
one-shot REG, a TuNA-like experiment was conducted by (van Deemter et al., 2017), in
which the MTUNA corpus was introduced. An initial analysis concluded that 1) almost
all REs are bare nouns (with properties as pre-modifiers) and number phrases, while
demonstratives rarely appear; and 2) syntactic positions of REs matter. Building on MTUNA
and findings in the initial analysis, we further consider the following possible challenges:

1. Mandarin allows an NP to have no head noun. Recall that all classic REG algorithms
(e.g., the full brevity algorithm, the greedy algorithm, and the incremental algorithm)
add the TYPE property regardless of its discriminatory power. This might not always
be true for generating REG in Mandarin. For example, “4LH]” (héngde; red) is
an acceptable RE if the target object’s TYPE has zero discriminatory power. This
requires that, to be more human-like, an REG algorithm needs to treat TYPE non-
deterministically;

2. van Deemter et al. (2017) found that only 60%-70% of REs referring to plural referents
were marked with numbers. Also considering that Mandarin could express plurality
implicitly, the effectiveness of the plural REG algorithms for Mandarin is challenged.
For example, if the goal is to single out two chairs from tables, then simply saying
“FaF" (yizi; the chair/the chairs) is ambiguous as it is unclear whether it refers to one
of the two chairs or the set of two chairs;

3. Due to the Mandarin’s preference for brevity, it is natural to expect brevity-first
algorithms (e.g., the full brevity and the local brevity algorithm) would receive better
performance than, for example, the greedy algorithm;
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4. With a similar reason, although previous studies suggested that, in English, over-
specification benefits both speakers and listeners, we expect there are fewer over-
specifications and more under-specifications in Mandarin than in English. In aggre-
gate, one-shot REG in Mandarin might ask for an algorithm that is non-deterministic,
targeting less at over-specifications and allows under-specifications.

7

Regarding REG in context, recall that Huang’s initial interpretation of the “coolness”
hypothesis concerned the use of zero pronouns. This requires a referential form selector to
also naturally use non-overt REs. The “coolness” hypothesis also includes that a RE can be
definite and plural without explicit markers. When deciding the content of them, a REG
model should guarantee that the use of REs as such will not result in referential ambiguity.
Additionally, the syntactic structure of NPs in Mandarin could be considerably complex
(see Appendix A for more details). The REG algorithms might meet new challenges when
generating REs like:

47)  sKk= AT A =4 24
zhangsan tamén na sange xuéshéng
the three students that include Zhangsan

3.4.6 Realisation

We consider three possible challenges for linguistic realisation posed by Mandarin. First,
since many elements (e.g., aspect marker, particle, plural marker and so on) in Mandarin
are sometimes optional, the job of a surface realiser is to provide interfaces that allow as
many options as possible. For instance, a good realiser needs to enable its users to either
use explicit aspect markers or zero aspect markers. Additionally, to ensure grammaticality,
the realiser should also include linguistic constraints on when each of these options can
be chosen and when they cannot. Second, as an analytic language, compared to western
languages, Mandarin has no inflectional morphology and has more varieties of syntactic
structures. This said, a Mandarin surface realiser should have much fewer morphological
operators and much more syntactic operators than realisers for western languages. Last, the
Mandarin realisers need to handle classifiers, such as the “Z&” (bén) in the number phrase
“=7K4" (sanbénshii; three books). Dictionaries (i.e., associating each noun in Mandarin
with a fixed classifier) can handle most cases but not all. Exceptions include, for example,
the choice of the classifier of the noun “J5” (fangzi; house). In this situation, the choice of
classifier relates to the exact meaning of “/5”, which needs to be reasoned from a wider
context. If the classifier “[A]” (jian) is chosen, then it (i.e., “— [A] J5”) will mean “a room”,
while if the classifier “#%” (dong) is chosen, then it (i.e., “— # 55”) will mean “a house”.
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CHAPTER 4 I

One-shot Referring Expression
Generation

Abstract. One-shot Referring Expression Generation (REG) is about producing referring
expressions (REs) from non-linguistic contexts. One-shot REG algorithms offer computation
models for the production of these REs. In earlier work, a corpus of REs in Mandarin was
introduced. Building on this corpus, on the one hand, we introduce a new perspective on
the various ways in which a RE can refer, or fail to refer, to its target referent. We arque
that our perspective enables a more fine-grained understanding of reference phenomena than
before, with potential implications for Natural Language Processing. With this new perspective
in hand, we offer an in-depth analysis of the corpus, focusing on issues that arise from the
grammar of Mandarin, and compare the use of REs between Mandarin and English. Perhaps
most strikingly, we found a much higher proportion of under-specified expressions than what
previous studies had suggested, not just in Mandarin but in English as well. On the other
hand, we annotate the corpus, evaluate REG algorithms on it, and compare the results with
earlier results on the evaluation of REG for English.

The publications related to this chapter are:

1. Chen, G., & van Deemter, K. (2020). Lessons from computational modelling of
reference production in Mandarin and English. Proceedings of the 13th International
Conference on Natural Language Generation, 263-272. https:/ / www.aclweb.org /
anthology/2020.inlg-1.33

2. Chen, G., & van Deemter, K. (2021). Varieties of specification: Redefining over- and
under-specification for an enhanced understanding of referring expressions. Journal
Paper in Preparation

41 Introduction

The primary function of a referring expression (RE) is to help hearers identify what a
speaker is thinking about: the intended referent. The task of one-shot Referring Expression
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ONE-SHOT REFERRING EXPRESSION GENERATION

3

% g

Figure 4.1: A simple scene that requires speakers producing REs to single out the object in
the red window from others.

Generation (REG) is to design algorithms to generate such expressions from visual scenes.
For example, to generate a RE for the object in the red window of Figure 4.1, an algorithm
generates the expression (48-a) to accomplish a successful communication (i.e., singling out
the target referent from its distractors). One-shot REG is not a deterministic task because,
given a situation, multiple REs can all accomplish the task.

(48) a. thelarge one
b. the green chair
c. thelarge chair

d. the large green one

This task, on the one hand, has important practical value in natural language generation
(Gatt & Krahmer, 2018), computer vision (Mao et al., 2016), and robotics (Fang et al., 2015),
where, most recently, Neural Network based models (e.g., Castro Ferreira, Moussallem,
Kadar, et al. (2018) and Mao et al. (2016) and Cao and Cheung (2019)) have started to be
used. On the other hand, theoretically, REG algorithms can also be seen as models of
human language use (van Deemter, 2016).

In the second line of work, previous studies focus on two aspects (cf., Krahmer and
van Deemter (2012)):

(a) Designing and conducting controlled elicitation experiments, yielding corpora which
are then used for analysing the use of REs and evaluating REG algorithms to gain
insight into linguistic phenomena, e.g., GRE3D3 (Dale & Viethen, 2009), Tuna (Gatt
et al., 2007; van Deemter, Gatt, Sluis, et al., 2012), cocoNUT (Jordan & Walker, 2005),
and MarTask (Gupta & Stent, 2005);

(b) Designing transparent algorithms (in opposite to black-box neural network models)
that mimic certain behaviours used by human beings, for example, the maximisation
of discriminatory power (Dale, 1989) and/or the preferential use of cognitively
“attractive” attributes (Dale & Reiter, 1995); see Gatt et al. (2013) for discussion.

The focus of these studies was mostly on Indo-European languages, such as English,
Dutch (Koolen & Krahmer, 2010) and German (Howcroft et al., 2017). Recently, researchers
have started to have a look at Mandarin Chinese (van Deemter et al., 2017), collecting a
corpus of Mandarin REs, namely MmTUNA. More interestingly, they also hypothesise a
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link between the use of REs and the idea of “coolness” (C.-T. J. Huang, 1984; Newnham,
1971). Concretely, since Mandarin is “cooler” than western languages, Mandarin speakers
might favour brevity over clarity when producing REs. So far, only a preliminary analysis
has been performed on MTUNA, and this analysis has focused on issues of Linguistic
Realisation (van Deemter et al., 2017): (a) the REs in the corpus have not yet been analysed
and been compared with those in other languages; and (b) the performance of REG
algorithms on the corpus has not been evaluated. Therefore, the proposed hypothesis
above has not yet been tested.

To fill this gap, for issue (a), we analyse the REs in MTUNA. Since the idea of coolness
suggests that the production of REs in Mandarin might rely more on communicative
context for disambiguation than western languages, our analysis focuses on the amount
of information that REs use. Specifically, we concentrate on the use of REs that contain
more semantic information or less semantic information than is strictly necessary for
identifying the intended referent. These two kinds of REs are called over-specification
and under-specification, respectively. If Mandarin favours brevity over clarity to a greater
extent than languages like English, then one would expect to see less over-specification
and more under-specification in Mandarin.

There has been a long tradition of studying the use of REs (Dale & Reiter, 1995;
Engelhardt et al., 2006; Engelhardt et al., 2011; Koolen et al., 2011; Paraboni et al., 2017;
Pechmann, 1989). They defined over-specification in essentially Gricean terms. Particularly
relevant theory is the Maxim of Quantity from the Gricean Maxims (Grice, 1975), which is
comprised of two rules:

1. the speaker should make the contribution as informative as required;

2. the speaker should not make the contribution more informative than is required.

For these researchers, if an expression violates the second rule of quantity, then it is consid-
ered to be an over-specification. Similarly, if an expression breaks the first rule, then it is
considered an under-specification. This approach, which has informed many theories and
computational models, has a number of important limitations: most obviously, it does not
specify what or how much information is “required”. This hinders us from conducting
in-depth analysis, quantitatively. For example, both expression (48-a) and expression (48-b)
provide all the “required” information, allowing hearers to identify the target objects. Like-
wise, both descriptions contain no redundant information since none of their words could
be omitted. Therefore, it is reasonable if we exclude both of them as over-specifications
in our analysis. Nevertheless, the description (48-b) mentions two attributes (i.e., COLOUR
and TYPE) whereas (48-a) mentions only one (i.e., SIZE), suggesting that, in some sense, the
former conveys more information than required. Equally importantly, the above approach
lumps together situations that are intuitively very different, designating them all as over-
specifications, and nothing else. For instance, it is known from experiments (Levelt, 1993)
that an utterance such as (48-c) (which is technically an over-specification because TYPE
can be removed without causing referential ambiguity, so it’s not “required") is much more
commonly produced than descriptions like (48-d). This is thought to be because the role of
TYPE is different from COLOUR, for example, because “chair” helps the speaker to construct
a grammatical correct noun phrase (NP) in English (Dale & Reiter, 1995). A fine-grained
analysis of the over-specification phenomenon should arguably distinguish between those
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over-specifications that are caused merely by the presence of a logically superfluous TYPE
attributes, and those over-specifications that are caused by other attributes.!

Therefore, we propose a new perspective on specification (i.e., over-specification as well
as under-specification), and developed an annotation scheme for annotating different types
of specifications accordingly. With this scheme, we annotated MTUNA, and provide a more
detailed analysis of the use of Mandarin REs on the basis of MTUNA.

For issue (b), we first annotated the MTUNA corpus in line with the annotation scheme
of TUNA (van der Sluis et al., 2006), after which we used this annotation to evaluate the
classical REG algorithms and compared the results with those for the English TuNA corpus
(abbreviated as ETUNA). We also show that our new perspective on specification can also
help with analysing and comparing the results of different REG algorithms.

4.2 The Mandarin TUNA

In Chapter 2, we introduced the background of the TUNA experiment, and the ETUNA
corpus. We hereby briefly introduce its Mandarin processor: MTUNA, and highlight some
special features of MTUNA together with its initial findings. The different TUNA corpora
were set up in highly similar fashion: for instance, they all use a few dozen stimuli, which
were offered in isolation (i.e., participants were encouraged to disregard previous scenes
and previous utterances), and chosen from the same sets of furniture and people images;
furthermore, participants were asked to enter a type-written RE following a question.

Yet there were subtle differences between these corpora as well, reflecting specific
research questions that the various sets of authors brought to the task. The stimuli used by
MTUNA were inherited from the Dutch TuNA (Koolen & Krahmer, 2010), where there are
total of 40 trials. Unlike other TuNAs which always asked subjects essentially the same
question, namely Which object/objects appears/appear in a red window?, MTUNA distinguished
between REs in subject and object position. 2 More precisely, subjects were asked to use
REs for filling in blanks in either of the following patterns:

(@  __ EABETERT
‘Please complete the sentence: is in the red frame(s)’
(b) ABEFRFEE

‘What’s in the red frame is

7

where (a) asked subjects to place the RE in subject position while (b) asked to place it in
object position. The initial analysis in van Deemter et al. (2017) focused on how definiteness
was expressed in Mandarin REs. They found that most definite REs are bare nouns; and
indefinite REs also appear quite often, especially in the subject position.

4.3 Research Questions

We start with analysing the REs in TuNA. The coolness hypothesis stated that Chinese
relies more on the communicative context for disambiguation than western languages,

Accordingly, classical REG algorithms, like the incremental algorithm (Dale & Reiter, 1995), give TYPE a special
role, i.e., giving every RE a TYPE, regardless of whether this contributes to the ability of the expression to refer
uniquely.

This was done because the literature on Mandarin (e.g., Chao (1965)) suggests that Mandarin NPs in pre-verbal
position may be interpreted as definite unless there is information to the contrary.
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such as English, based on which Chinese is also seen as a discourse-based language while
English is a sentence-based language. The existence of primary evidence for this issue in
REG was identified in van Deemter et al. (2017), indicating that Mandarin speakers rarely
explicitly express number, maximality and giveness in REs, and in G. Chen et al. (2018b),
indicting that they sometimes even drop REs. In this study, we were curious about the
following research question, which consists of two parts:

RQ1a We were curious about the use of over-specification and under-specifications in MTUNA
versus ETUNA, hypothesising that Mandarin REs use fewer over-specifications and
more under-specifications than English;

RQ1b We were curious about the use of over-specification and under-specifications in MTUNA

3

4

versus ETUNA, respectively. More specifically, in TUNA experiments (for whatever
ETUNA and MTUNA), the people domain is designed to be more complex than the
furniture domain in the sense of two dimensions: 1) scenes in the people domain use
real photographs of people, which allows more alternative attributes for subjects to
choose from compared to the artificial pictures in the furniture domain®; 2) since all
the objects in the people domain are male scientists, the objects in a scene is arguably
more perceptually similar to each other. The higher domain complexity makes the
targets in the people domain require more efforts to refer to and, consequently,
subjects tend to over-specify more frequently. This is consistent with van der Sluis
and Krahmer’s findings on speakers tending to use more words when referring
to targets in difficult tasks. Therefore, it is plausible if one expects that domain
complexity has a positive influence on the use of over-specifications in that domain.

As discussed, to analyse the use of over- and under-specifications, we require a new
perspective on defining and categorising them in order to allow quantitative analysis.
Therefore, in the first study of this chapter, we introduce a new perspective of specification,
in which we propose to (re-)define and sub-categorise over- and under-specification. We
then use these definitions to annotate both MTUNA and ETUNA corpora and compare the
use of specifications.

Analogous to studies of earlier QTUNA corpora, another research question (RQ2) is
how classic REG algorithms perform on MTUNA and how this is different from the performance
on ETUNA? We were curious to see whether the value of each evaluation metric for each
algorithm (which will be introduced in §2.2) will change very much, and whether the rank
order of the algorithms stays the same. If, as hypothesised, Mandarin prefers brevity over
clarity, then the Full Brevity algorithm (which always yields REs with minimal number
of properties), is expected to have higher performance on MTUNA than on ETUNA. The
expected effect on other classic algorithms is less clear. To answer this question, we annotate
the MTUNA corpus (enabling it to be used for evaluation), evaluate REG algorithms on the
annotated MTUNA, and compare the results to that on ETuNA. Also, we hope our new
perspective can help understand the performance of each algorithm.

It is thought that, since TYPE helps create a “conceptual gestalt” of the target referent
(which benefits the hearer (Levelt, 1993, Chapter 4)), speakers tend to include a TYPE in
their REs regardless of its discriminatory power. * For this reason, algorithms such as

Note that earlier studies by van der Sluis and Krahmer (2007) showed that although the use of attributes in the
people domain is less controlled, the subjects prefer to use a certain subset the available attributes than others.
Note that 92.25% of the REs in ETUNA contain a superfluous TYPE (van der Sluis et al., 2007)).
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the Incremental Algorithm (Dale & Reiter, 1995) always append a TYPE to the REs they
produce. However, Lv (1979) found that the head of a noun phrase in Mandarin is often
omitted if this noun is the only possibility given the context. This suggests that, if all objects
in a scene share the same TYPE (e.g., all the objects in the people domain of TUNA are
male scientists), then it is less likely for Mandarin speakers to express a TYPE. Accordingly,
our third research question (RQ3) asks to what extent the role of TYPE differs between English
and Mandarin. This asks, on the one hand, that we need to take the use of TYPE into
consideration when analysing the use of over-specifications. On the other hand, we are
also curious to what extent this issue affects the performance of the classic REG algorithms.

We have seen that MTUNA asked its participants to produce REs in different syntactic
positions. van Deemter et al. (2017) found more indefinite NPs in the subject position,
which is inconsistent with linguistic theories (James et al., 2009) that suggests subjects and
other pre-verbal positions favour definiteness. Building on these findings, our last research
question (RQ4) is about how syntactic position influences the use of over-/under-specification
and the performance of REG algorithms. This would use either our results of evaluating REG
algorithms on MTUNA as well as ETUNA or our results of annotating these two corpora
using the new perspective.

In a nutshell, to answer the research questions in this section, we need to annotate both
MTUNA and ETUNA corpora with both the use of specifications and the used properties.

4.4 Study 1: Modelling Varieties of Specification

In this section, we will first motivate the necessity of a new perspective of specifications
using observations from MTUNA and ETUNA. We then offer an explanation of the new
perspective we are proposing.

Note that, in this study, we focus on simple situations, in which the wider “context of
use" of an NP does not play a role. This will allow us to keep our definitions simple and
our annotation scheme easy to use. When the context is taken into account, this can often
affect interpretation. Given an appropriate context, for example, we can say “the dog” to
refer to a particular dog, even though there are many dogs in the world, as long as the
intended referent is the contextually most salient dog (Krahmer & Theune, 2002). Viewed
in isolation, “the dog" is under-specified but viewed in context, it may be very clear. In
the relatively simple corpora on which we focus in this study, i.e., MTUNA and ETUNA,
context does not play such a disambiguating role. The role of context is discussed briefly
in §4.4.7.

44.1 When and How Do Speakers Over-specify?

To understand why over-specification and under-specification occur, we need to know
when and where they occur. This requires precise definitions of both over- and under-
specification. As discussed, a common practice uses the Gricean Maxim of Quantity.
On the basis of the second principle of Gricean Maxim of Quantity, the concept of over-
specification is firstly defined as an RE that is more informative than required. In that
sense, if we represent an RE as a set of properties, it covers situations in which an RE
includes non-required properties while managing to identify the referent. Such a definition
works fine in psycho-linguistic studies that investigate over-specifications with only one
superfluous property. However, when focusing on general use of RE opinions were divided.
Due to some vague terms in the previous definition, we found that:
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Figure 4.2: A trial from the MTUNA corpus elicits over-specifications that are not covered
by the previous definition of over-specification.

e it is unclear what types of over-specification have been included; and

¢ the definition overlooks vital differences between over-specifications

by providing examples of these problems in the MTUNA and ETUNA® corpora.

The first type of problem was found when we look into the REs from the MmTUNA
experiment, whose scene is shown in Figure 4.2. When subjects referred to the chair in
the red window, they could say any of the REs in Example (49), where the “MD” mark
indicates the current description uses the minimum number of properties, namely, minimal
description:

(49) a. thelarge one (MD)
b. the large green one
c. the green chair

As there is only one large object in the scene, using only one property: (SIZE, large), is
sufficient for successful communication, as in (49-a). However, except over-specifications,
such as (49-b) whose property (COLOUR, green) removable without breaking the commu-
nication successful, we found substantial amounts of descriptions like (49-c), which uses
two properties: (COLOUR, green) and (TYPE, chair). This results in the question of whether
the descriptions like (49-c) over-specify? Clearly, description (49-c) uses more properties
than the minimal description. But, simultaneously, none of its properties is superfluous.
The answer to this question relies on how we interpret the phrase “required” properties
in the Gricean Maxim of Quantity. If we interpret it as: properties whose removal would

Since this new perspective is applicable regardless of language, we translate all examples from MTUNA to English
in this section.
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prevent successful communication, as in Koolen et al. (2011) and van Deemter (2016), then
description (49-c) is no over-specification since any removal of its property would result
in an under-specification. But if we interpret it as: a set of properties that contains the
minimum number of properties required for unique identification (as in Dale and Reiter
(1995) and Gatt and van Deemter (2007b)), then (49-c) is an over-specification. This suggests
that a more precise definition of quantification is needed.

In the corpora, we observed a large amount of RE like:

(50) the large chair

in which only the TYPE attribute is superfluous. As mentioned previously in this study,
these cases differ importantly from over-specification like (49-b) because English speakers
tend to always include TYPE (Levelt, 1993) (which is reflected in REG algorithms (Dale &
Reiter, 1995)). Note that this is bound to be different in languages that allow zero head
nouns in noun phrases.

Sometimes, probably because subjects intended to highlight some specific properties
of a referent, they describe a single property more than once in a single expression. For
example, when referring to a backward table, some subjects said:

(51) the backward table with invisible drawers

in which, semantically, both the phrase backward and with invisible drawers are talking
about the ORIENTATION attribute. Based on Gricean Maxim of Quantity, it is unclear
whether description (51) is an over-specification or not if either TYPE or ORIENTATION are
superfluous? Moreover, it is also unclear when we are heading to quantify the human use
of over-specification if in this example ORIENTATION is a superfluous attribute, should the
total number of superfluous attributes be added by 1 or by 2? We hope by introducing
an annotation scheme with precise definitions of over-specification with corresponding
superfluous attribute counting strategy in this work, we could have good answers to these
questions.

Certain issues are particularly related to expressions that refer to sets. Suppose we
intend to refer to two red pieces of furniture: one is a chair and the other is a table. Suppose
the minimal description contains only one property: (COLOUR, red), we could say:

(52) a. the red chair and the red table
b. the red chair and the table
c. the red furniture

It is hard to tell the difference between these descriptions qualitatively and quantitatively.
For example, should the lack of “aggregation” (e.g., merging the two occurrences of red in
(52-a)) be seen as a type of over-specification? Or should the use of the words chair and
table be seen as a kind of over-specification, because these words offer more details than
required?

Not only the Maxim of Quantity but also the Maxim of Quality should play a role
in the analysis of an RE corpus, because a substantial number of REs in the corpora are
simple “incorrect” because one or more of the properties expressed are not applicable to
the target referent. For example, speakers sometimes say red chair to a green chair. Earlier
analysis of these corpora (Gatt et al., 2007; van der Sluis et al., 2007; van Deemter, Gatt,
Sluis, et al., 2012; van Deemter et al., 2017) neglected these incorrect descriptions, which
arguably introduced noise into the overall analysis that these papers were able to offer.
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4.4.2 Varieties of Referential Specification: a Formal Account

In what follows, we use the insights discussed above to propose a new way of thinking
about what it means to talk about an intended referent (to “specify” the referent) that
is both linguistically insightful, and formally precise enough that it can be employed to
annotate corpora and to quantitatively evaluate NLG algorithms, especially those that
produce REs.

It will be useful, in this discussion, to use plenty of examples of concrete utterances.
These will frequently include REs from the MTUNA (or ETUNA) corpora. Nonetheless, our
definitions and annotation scheme (§4.4.4) are designed to have much wider validity.

Preliminaries

Following the literature on REG (e.g., Krahmer and van Deemter (2012)), we distinguish
between attributes and properties. For instance, we call COLOUR an attribute. Attributes
have values. For example, the attribute COLOUR may have values such as red, blue, and so
on. An attribute-value pair, such as (COLOUR, blue) or (TYPE, chair), is called a property (i.e.,
something that can be true of an object), for which we will often use the letter P. A RE D
can be represented by a bag pf properties® (i.e., multi-set) of n properties: D = {Py, ..., P, }.
We define “P; = P;” as P; and P; express the same value of the same attribute.

Definitions that are well-formed cannot be incorrect. The question is whether a given
set of definitions is useful because they allow us to make those distinctions that help us
think about the phenomenon in question. So although a different set of definitions would
have been possible — and we will indicate some points where we are aware that a definition
could have been different — we believe that the following set is useful.

The primary goal of an REG algorithm is to enable the hearer to identify the intended
referent r in a setting’ C, which consists of  itself plus a non-empty set of other objects
(which are often called distractors, e.g., McDonald (1983)). In other words, producing a
distinguishing description, which could be formally defined as follows®:

Definition 1 (Distinguishing Description). The description D = {P, ..., P, } is a distinguishing
description of the intended referent r if it singles out r from all other elements of C. This is the case
if and only if [P1] N ...0 [P,] = {r}.°

In any distinguishing description, we will call the use of a property (or attribute) superfluous
if and only if the description would still be distinguishing if that property was removed
from the description.

Henceforth, we will suppress the role of the referent r in our definitions. For example,
a Distinguishing Description of r will simply be called a Distinguishing Description. If D
singles out something that is not the intended referent, then we will say that it is not a
Distinguishing Description but a “Wrong Description".

6 For instance, {A, B, A} is the same as {B, A, A} but different from {A, B}

7 This “setting" is sometimes called “context”, but we avoid this term here to avoid confusion with other types of
context.

8 This definition is implicit in Dale and Reiter (1995).

9 Note that [P;] is a set of elements that share a property P, i.e., the denotation or extension of P;.
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Minimal Description

Dale (1989, 1992) suggested that the best RE for a given referent must always be the
shortest possible one: an RE that uses as few properties as possible, also known as a
minimal description. '° This idea can be seen as interpreting the Maxim of Quantity as
including a requirement that the RE should be as short as possible.

Definition 2 (Minimal Description). A set of property occurrences D = {P,.., P,} is a
minimal description if and only if it is a Distinguishing Description and there is no Distinguishing
Description D' = {Pj, ..., P,,} such that m < n, that is, |D'| < |D|.

Here, |D| is the size of D, that is, the number of property occurrences in D. It is easy
to see that, in one and the same situation, a referent may have more than one minimal
description..

Over-specification

Previous studies in different areas of research (Engelhardt et al., 2006; Engelhardt et al.,
2011; Koolen et al., 2011) motivate their understanding of over-specification on the basis
of the second principle of the Gricean Maxim of Quantity: an RE is over-specified if it
is more informative than is necessary for successful communication. This clearly covers
situations in which an RE includes non-required properties while managing to identify
the referent. However, as discussed in the §4.4.1, there are some interesting distinctions
that this definition does not make because, as illustrated in example (49-c), a description
without superfluous properties may nonetheless not be minimal.

Definition 3 (Over-specified Description). A set of property occurrences D = {Py, ..., P, } is an
Ower-specified Description if and only if it is a Distinguishing Description and it is not a Minimal
Description.

Bearing these issues in mind, we will now sub-categorise the class of Over-specified
Descriptions.

Numerical Over-specification. Numerical over-specifications are cases like “the large
green one" in (49-c) (in §4.4.1). In this description, no property is superfluous (unlike (49-b),
where “green" could be removed) yet it is possible to construct a shorter RE by replacing a
set of properties in the expression by a smaller set of properties where, crucially, the result
is still a distinguishing description:

Definition 4 (Numerical Over-specification). The description D = {Py, ..., Py} is a numerical
over-specification if and only if D is a Distinguishing Description and there is no P € D such that
Np.ep—{p} [P;] = {r}, but the number of attributes n is greater than that of a minimal description

of r.

Nominal Over-specification. The special status of the TYPE attribute comes from a long
tradition of psycholinguistic work, summarised well in Levelt (1993, Chapter 4), based
on the idea that (English) speakers tend to include a head noun in their REs. This idea
was combined with the idea that head nouns classify things into broad classes (“types")

An algorithm that achieves this is the Full Brevity algorithm (Dale & Reiter, 1995).
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of objects , (e.g. Dale and Reiter (1995)), thus differentiating the TYPE attribute from other
attributes. Types are also known as categories and a large body of theory has arisen about
the role of types in language and thought (Rosch et al., 1976). We hereby define the
expressions like (50), where there is a superfluous TYPE attribute while none of its other
attributes is superfluous attributes, as nominal over-specifications. Formally, it can be defined
as:

Definition 5 (Nominal Over-specification). A Nominal Over-specification is a set of property
occurrences {Py, .., Py} in which at least one of Py, .., Py, say P;, is a TYPE, and {Py, .., P,} — {P;}
is a Distinguishing Description, but for every j # i, {Py,.., Pu} — {P;} is not a Distinguishing
Description

Note that we don’t need to require explicitly that {Py, .., P, } is distinguishing because this
follows from the requirement that {Py, .., P,} — {P;} is a Distinguishing Description.

Duplicate-Attribute Over-specification. Similar to the nominal over-specification, ex-
pressions like (51) also introduce a new type of over-specification due to its repeated use of
the same attribute, which is named as Duplicate-Attribute Over-specification.

Definition 6 (Duplicate-Attribute Over-specification). A description D = {Py, ..., P,} is a
duplicate-attribute over-specification if and only if there exist two property occurrences P;, P; € D
such that P; = Pj, and Np.ep—¢p, [Pl = {r}-

Recall that the clause “P; = P;” means that P; and P; express the same value of the same
attribute. Note that this does not preclude considerable variations in surface form. For
example, the left facing chair and the chair whose back faces right express the same property.
Other examples in the TUNA corpora include sofa vs. settee, male vs. man, small vs. little,
and so on.

Real Over-specification. Now let us turn to the over-specification which was covered by
most of the previous studies, called Real Over-specification. We also need to note that real
over-specification should not overlap with the nominal over-specifications. In other words,
if an RE has superfluous properties other than a superfluous TYPE, it should not also be
classified as a nominal over-specification anymore. Concretely, a more formal definition
can be written as:

Definition 7 (Real Over-specification). A description D = {Py, ..., Py} is defined as a real
over-specification if at least one of the P € D is P # TYPE and such that ﬂpjep,{p} [P;] = {r}.

It could be argued that there exists another special type of over-specification, where
the value of an attribute is more specific than necessary. In TUNA, such over-specification
occurs frequently in the TYPE attribute in the people sub-corpus. For example when the
word scientist is used even though the word person would have been sufficient. This situation
could be modelled by saying that scientist is a sub-type of person. This phenomenon might
be called Choice-of-Value Over-specification.

However, we have chosen against this approach, because it would create a systematic
ambiguity because an over-specified description could be turned into a minimal description
in different ways: by removing a property (e.g. remove a property like “wears glasses"),
or by replacing a property by a more general one (e.g. replacing scientist by person); the
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Figure 4.3: Two scenes from the MTUNA corpus, each of which is a scene asking subjects
to produce REs refer to a set of two target referents.

former would make it a real over-specification, but the latter would make it a choice-of-
values over-specification.

To acknowledge the fact that, in the situation above, “scientist" is over-specified, we
proceed as follows. A sub-type is interpreted as introducing new attributes to its parent
type, i.e., dividing a single attribute into multiple attributes. For example, the word scientist
expresses both TYPE and JOB.

Under-specification

Under-specification is the flip-side of over-specification. It is about expressions that do
not successfully single out the target referent from its distractors. As discussed, it break
the first principle of the Gricean Maxim of Quantity, i.e., the speaker did not make the
contribution as informative as required. For Figure 4.2, the description (53-a) cannot help
the reader to successfully identify the intended referent as there are two chairs in the scene.

(53) the chair
the large one (MD)
the green chair

the large chair

pan o

To be more precise, this kind of specifications is defined as follows:

Definition 8 (Under-specification). If, for a description D = {Py, ..., P}, there exists a real
super-set A of v ((i.e., {r} C A)) such that Npep [P;] = A, then we call D an Under-specification.

Analogous to real over-specification, if a description contains no superfluous property
but one of its properties is an attribute whose value is not specific enough, this can also be
seen as a special type of under-specification, namely, Choice-of-Value Under-specification. In
example (54), if there are two chairs in a scene, where one is blue and the other is black,
then compare to the minimal description (54-b), the word dark in (54-a) is not specific
enough to single out the blue chair from the chairs.
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(54) a. the dark coloured chair
b. the blue chair (MD)

When referring to multiple target referents, such an under-specification also exists. In
MTUNA, for the scene 4.3(a), we found the following REs (translated from Mandarin):

(55) a. the objects viewed from the side
b. the red objects viewed from the side
c. the left facing objects (MD)

If we suppose the phrase viewed from side means “facing left or right”, then (55-a) is choice-
of-value under-specified, compared to the minimal description (55-c). ! To fix such an
under-specification, there are two alternatives: 1) making the property more specific to left
facing and constructing a minimal description; 2) adding a COLOUR property with the value
of red, which results in a numerical over-specification (55-b). It is hard to decide which
repair is better, but such confusion also causes another confusion of which type of under-
specification this description should be: it can be either as a real under-specification'? or
as a choice-of-value under-specification. The same problem happens in scene 4.3(b), for
which one could say:

(56) a. the green one and the blue one (MD)
b. the front-facing coloured objects (MD)
c. the coloured objects

Similar to (55-a), for (56-c), we can either re-write the word coloured to specific colours for
the two objects respectively and distribute into two clauses or add the ORIENTATION of
these two objects as in (56-b). Similar cases, where only making a property more specific
can repair an under-specification, exists, but it does not appear in TUNA. A simple example
would be the case where all the objects in scene 4.3(a) are red. A simple solution is that we
assume that the Choice-of-Value Under-specification does not exist.

Mixed Description. The literature has tended to focus on situations in which a description
is either over-specified or under-specified, or minimally specified. Logically, however, there
are other possibilities, and these are also encountered in real life.

One example of such cases is what we call a Mixed Description for acknowledging that
it is an under-specification but has superfluous properties. A Mixed Description is an
Under-specified Description from which, nonetheless, one or more property occurrences
can be removed without changing the extension of the description. More precisely:

Definition 9 (Mixed Description). A description D is a Mixed Description if and only if it is an
Under-specified Description and there exists a property occurrence P; in the description such that

Np.ep—1p3 [P = Np,ep[Pr]-

For example, given the scene depicted in Figure 4.4, the under-specification (57-a) describes
either the SIZE or the COLOUR of the referent. However, all small objects in the scene are
green, which suggest that the use of COLOUR does not add any information if we have
already used SIZE. In other words, COLOUR is superfluous in this under-specification. In

11 The description facing left or right is less specific than facing right.
12 If choice-of-value under-specification exists, then we call other under-specifications as real under-specifications.
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Figure 4.4: A scene from the MTUNA corpus.

contrast, either ORIENTATION or TYPE in the description (57-b) has certain contribution
on singling out distractors. It is, therefore, not a mixed description, but a pure under-
specification (which is introduced below).

(57) a. the green small desk
b. the front-facing desk

Pure Under-specification To acknowledge the existence of under-specifications that are
not mixed descriptions, we introduce a new category.

Definition 10 (Pure Under-specification). A set of property occurrences D = {Py, ..., Py} is
a Pure Under-specified Description if and only if it is an Under-specification and it is not a Mix
Description.

4.4.3 Description Basis

So far, we have introduced a variety of different kinds of over-specifications. In light of their
definitions, minimal descriptions and numerical over-specifications have no superfluous
property. Therefore, they can serve as description bases of other types of over-specification.
Formally, given an over-specified description X has r as its intended referent and this
description expresses property occurrences { Py, .., P, }, then this description is considered
to be “built around” a minimal description (or a numerical over-specification) if there
exists a proper subset X; of X of {Py,..,P,} such that X is a minimal description (or a
numerical over-specification) of r. Xj, is defined as a description basis of X. Theoretically, a
description could have multiple description bases.
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Figure 4.5: Diagram of relationships between each type of specification. In this diagram,
“real” is the real over-specification, “num” is numerical over-specification, “nom” is the
nominal over-specification, “dup” is the duplicate-attribute over-specification, “min” is the
minimal description, “mix” is the mixed description, “pure” is pure under-specification
and “wrong” is the wrong description. A — B (with solid line) means A is a kind of B,
while A — B (with dash line) means B can be served as a description basis of A.

Wrong Description

In some cases (in the TUNA corpora, this amounts to approximately 3-4% of all cases) a
description is simply wrong, i.e., describing the target referent incorrectly. In this study, we
do not take a position on what to do with these descriptions'3, but we do offer labels that
can flag the issue.

Definition 11 (Wrong Specification). A Wrong Specification is a set of property occurrences
{Py, .., Py} in which at least one of Py, .., Py, say P;, is not true of the intended referent r, that is,
r ¢ [[Pi]]-

It follows that when {P, .., P, } is a Wrong Specification, then r ¢ [P;] N ... N [Py].

The logic of reference

Given the definitions above, a number of things follow immediately about the relationships
between the various kinds of specifications. In what follows, we state some of the more
important of these and visualise the main relationships in a graph. Since most of these
consequences of our definitions are fairly immediate, most theorems will be stated without
formal proof.

Theorem 1. All of minimal descriptions, real over-specifications, numerical over-specifications,
nominal over-specifications, and duplicate-attribute over-specifications are distinguishing descrip-
tions.

For example, investigate what kind of role the Gricean Maxim of Quality should play when modelling the
production of REs.
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"LABEL": "Real Over-specification",
"SUPERFLUQOUS": 1

Figure 4.6: The annotation for the RE (49-b): the large green one, in JSON format.

Theorem 2. A distinguishing description cannot be a mixed description, a pure under-specification,
or a wrong description.

Theorem 3. Each of the following classes is mutually exclusive: minimal descriptions, real over-
specifications, numerical over-specifications, nominal over-specifications, mixed descriptions, pure
under-specifications, and wrong descriptions.

Theorem 4. Each duplicate-attribution description is either a real over-specification or a nominal
over-specification.

Figure 4.5 describes the relationship between each type of specifications, in which each
orange block represents a category we have introduced in this study. Consider theorem 4
for instance. Suppose we have a duplicate-attribute over-specification D = { Py, ..., P, } in
which there are m (0 < m < n) duplicated properties (see Definition 6 for the definition of
duplicated properties), represented as Dy, (Dgyp C D). If all properties in Dy, are TYPES,
then D is a nominal over-specification (because TYPE is the only superfluous attribute in
D). Otherwise, it is a real over-specification (because D contains a superfluous non-TYPE
property). The other theorems can be proven using similar reasoning.

4.4.4 Annotating the Use of Over- and Under-specifications

We annotated each expression using a set of key-value pairs stored as a JSON. For
example, for the expression (49-b), we annotated it with the annotation shown in Figure 4.6,
in which LABEL indicates which types of specification the current description should fall in,
and SUPERFLUQUS records the number of superfluous properties. Note that when annotating
a numerical over-specification, because none of the properties is superfluous, we set the
value of SUPERFLUOUS to zero.

Since both nominal over-specifications, as well as real over-specifications, could have a
superfluous TYPE, to take this superfluous TYPE into account and to differentiate it from
normal over-specified properties, we employed a new variable, namely, SUPERFLUOUS-TYPE.
If a superfluous TYPE is found, we accumulated the variable SUPERFLUOUS-TYPE by one.

When annotating a duplicate-attribute over-specification, since it could either be a
real over-specification or a nominal over-specification, we only tracked the number of
duplicated properties. To this end, we designed a new variable: DUPLICATE. For example,
suppose we have three properties: P;, Pj, Py € D (each of which could be either a TYPE or
other types of property) and P; = P; = P, then we annotate: DUPLICATE : 2.

Here, we provide some relatively complex examples where a real over-specification
contains superfluous TYPE property or duplicated properties. For example, if we have the
following expressions:
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"LABEL": ["Real Over-specification",
"Duplicate-attribute Over-specification"]

"SUPERFLUOUS": 1,

"SUPERFLUQOUS -TYPE": 1,

"DUPLICATE": 1,

"BASIS": "Minimal Description"

Figure 4.7: The annotation for the RE: the backward large table with no drawer, in JSON format.

(58) a. the backward large table with no drawer
b. the large one (MD)

Comparing to the minimal description (58-b), the over-specification (58-a) is a real over-
specification, in which there is a superfluous TYPE (large), and two superfluous ORIENTATION
(backward and with no drawer). Interestingly, the duplicated properties themselves are
superfluous properties. In such a case, we add SUPERFLUQUS with one for acknowledging
the superfluous ORIENTATION. It is also a duplicate-attribute over-specification. We add
DUPLICATE with one for its duplicated use of ORIENTATION. Therefore, the annotation of
description (58-a) is shown in Figure 4.7.

Note that when deciding the number of superfluous properties, we counted the maxi-
mum number of properties (including TYPE) that can be removed but the resulting expres-
sion is still a distinguishing description. For example, for the scene in Figure 4.2, except
the expressions in (49), we could also say:

(59) a. the front-facing green chair
b. the large green chair

For description (59-a), only the phrase front facing can be removed, which leads to 1
superfluous property. This implies that removing superfluous properties will sometimes
result in a numerical over-specification. As for the description (59-b), either removing the
large or removing both the green and chair yields distinguishing descriptions. However,
based on the principle above, the latter removal is more favourable since it removes more
properties than the former one.

Based on the idea of “description basis”, in our annotation, we used a variable BASIS to
track which type of specification (minimal description or numerical over-specification) the
current description is built around.

As for the under-specifications, we used a variable named UNDERSPECIFIED to record
the number of under-specified properties. For instance, for the expression (53-a), we have
UNDERSPECIFIED : 1. In contrast with the over-specification, when deciding the amount
of under-specified properties, we asked how many properties wound minimally have
to be added to make the description distinguishing. To do so, suppose there are two
possible fixes that propose to add the same number of properties. We chose the one
that generates superfluous properties as little as possible and records that number. For
example, we can make (53-a) distinguishing by either adding large (i.e., (53-d)) or green (i.e.,
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(53-¢)). Nevertheless, by adding large the fixed description (53-d), it is actually a nominal
over-specification with a superfluous TYPE. In contrast, by adding green, the resulting
description (53-c) is a numerical over-specification without any superfluous properties. We,
therefore, choose the later fix and mark it as a “Pure Under-specification” that is based on
the “Numerical Over-specification” Meanwhile, due to the existence of mixed descriptions,
we also need to record the number of superfluous properties.

In addition, we argue that, for under-specifications, it is uninteresting to still be aware of
whether a superfluous property is a TYPE or not and whether it is a duplicated property or
not. Therefore, we use only the variable “SUPERFLUQUS” to track the number of superfluous
properties in under-specifications.

4.4.5 Referring to Multiple Referents

So far, we introduce a new perspective that works well on singular descriptions (i.e., RE
referring to a single target). In fact, this can also be extended and be applicable to plural
descriptions (i.e., referring to multiple targets). We hereby list what kind of new risks
would be introduced and how we handle them.

First, plural descriptions come in different shapes: they may either separate the set to
which they refer into parts (e.g., the red chair and the blue fan), or not do this (e.g., the two
grey sofas). We call the former descriptions conjunctive, and the latter non-conjunctive. As for
non-conjunctive cases, the utterance can be simply tagged as the same as singular cases
since it only makes sense to ask how good it is as a description of the set. In contrast, for
conjunctive cases, each target can be annotated separately by considering the possibility
of aggregation. For the scene 4.3(a), for the former clause of description (60-a) which is
talking about the chair is an under-specification since there are more than one red chairs in
the scene. Meanwhile, for the latter clause, it is a nominal over-specification. However, for
a description like (60-b), it can be simplified by aggregating the same properties shared
by two objects. We will view this as a type of over-specification due to the possibility of
aggregation.

(60) a. the red chair and the left facing table
b. the left-facing chair and the left facing table

Second, if we treat lacking aggregation as a type of over-specification, then two issues need
to be tackled: when do we say a non-conjunctive RE is lacking aggregation and how many
superfluous attributes are there? To answer these questions, we differentiate two different
types of aggregations: syntactic aggregation and semantic aggregation. For example, in
the description (61-a), red is talking about a property of both chair and table, then the two
red can be aggregated to a single property as in description (61-b). Furthermore, chair
and fable can be also aggregated to furniture to a description like (61-c). In the former
aggregation, the two red can be aggregated because they are talking about exactly the same
property shared by the two target objects, which is so-called Syntactic Aggregation. On the
contrary, the latter aggregation happened due to the fact that they are both sub-categories
of furniture. We, therefore, name this specific type of aggregation as Semantic Aggregation.

(61) a. the red chair and the red table
the red chair and table
c. the red furniture
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We argue that the lack of syntactic aggregation is a type of over-specification in order
to acknowledge that a description uses more properties than necessary. If a description can
be repaired to a minimal description by only syntactically aggregating words'4, then we
call such a description a Lack-of-Aggregation Over-specification.

As for semantic aggregation, we do not consider it as a type of over-specification by
considering the following two reasons. On the one hand, rarely will people produce a
so-called Lack-of-Semantic-Aggregation Over-specification, which is somehow a result of the
fact that descriptions like (61-b) is syntactic ambiguous. On the other hand, sometimes,
lacking semantic aggregation could be seen as a particular case of Choice-of-Value Over-
specification, which, as discussed, is modelled by viewing a single word conveying more
than one property. In order words, we could treat chair and table as a more specific version
of furniture. A more straightforward example would be (62-a), in which is talking about
GENDER and TYPE, and, comparing to (62-b) which only talks about TYPE, it has one more
superfluous property.

(62) a. the man and the woman
b. the people

Third, we also observed a certain number of descriptions, each of which only refers to one
of the multiple target objects. For instance, when using description (63) for scene 4.3(b),
then the the blue sofa is missing. For this case, we will annotate the fan with what it should
be and call the sofa as a Missing Description.

(63)  the green fan

4.4.6 Analysing the Use of REs

We explore the first research question (RQ1) of this Chapter. We start with RQ1b, by
analysing the use of over- and under-specifications in MTUNA, which is then extended to
the ETUNA corpus. At length, we compare REs in MTUNA and ETUNA (i.e., RQla). Before
starting the analysis, we introduce the dataset we use.

Dataset

The sources of our dataset are the MTUNA and ETUNA corpora. When evaluating the REG
algorithms in Mandarin, we use the whole MTUNA corpora, where there are 10 trials in the
furniture domain and 10 trials in the people domain. Sometimes, using TYPE might result
in numerical over-specifications. For example, for the scene in Figure 4.2, the description
the green chair is a numerical over-specification since none of the attributes it used can be
removed. This makes the counts of the number of superfluous attributes or the number of
each sub-category of over-specifications is under-estimated. Therefore, when analysing the
use of over- and under-specifications (i.e., the first research question), we omit the trials
which allocate discriminative power to TYPE (i.e., trails whose minimal descriptions or
numerical over-specifications have TYPE). At last, we have 7 trials in the furniture domain
and 10 trials in the people domain. We name this sub-corpus as MTUNA-NT.

We also apply the scheme to ETUNA in order to compare its REs with those in MTUNA.
Unlike MTUNA, in ETUNA, subjects were broken into two groups based on whether

Phrases in different clauses but talking about the same property are seen as the places where the syntactic
aggregation should play a role.
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over under

domain  total  mini. real nom. num. (dup.) mix. pure

furmiture 361 46 118 132 2 7 14 49

MTUNA (12.74%) (32.69%) (36.57%) (0.55%) (1.94%) (3.88%) (13.57%)
| 261 17 217 69 13 2 43 2

people (4.71%) (60.11%) (19.11%) (3.60%) (0.55%) (11.91%) (0.55%)

fumiture 950 9 84 104 0 3 11 44

MTUNA-NT " (357%) (3333%) (4127%)  (0%)  (1.19%) (4.37%) (17.46%)
) 261 17 217 69 13 2 43 2

people (A71%)  (60.11%) (19.11%) (3.60%) (0.55%) (11.91%) (0.55%)

fumnit - 9 84 104 0 3 11 44

MTUNA-oL | rmture (357%) (33.33%) (4127%)  (0%)  (1.19%) (4.37%) (17.46%)
ol 218 15 145 37 2 2 18 1

peop (%) (6.88%) (66.51%) (1697%) (0.92%) (0.92%) (8.26%)  (0.46%)

furniture 156 1 5 62 0 0 6 28

ETUNA (0.64%) (37.82%) (39.74%)  (0%) 0%)  (3.85%) (17.95%)
3 75 47 0 1 7 0

people 132 u0  (56.82%) (35.61%)  (0%)  (0.76%) (5.30%)  (0%)

Table 4.1: Frequencies with percentages of referring expressions that fall in each type of
specifications in MTUNA, MTUNA-NT, MTUNA-OL and ETUNA respectively. Specifically,
total is the total number of descriptions in each corpus. mini. is the minimal over-
specification, real is the real over-specification, nom. is the nominal over-specification, num.
is the numerical over-specification, dup. is the duplicate-attribute over-specification, wrong
is the duplicate-attribute over-specification, ordinal stands for the ordinal description, and
under is the under-specification.

subjects were encouraged to use so-called locative expressions. Half of the participants
were discouraged, although not prevented, from using locative expressions, whereas the
other half were not. To conduct a fair comparison, we only use the subjects who were
discouraged to use locations. Furthermore, the scenes used in MTUNA and ETUNA also
have minor differences. In this study, we only use trails with exactly the same scene from
two corpora, which yields 7 trails in the furniture domain and 6 trials in the people domain.
We call this set of shared scenes of MTUNA as MTUNA-OL.

The Use of Over-specifications

As discussed, for RQ1b, domain complexity has a positive influence on the use of over-
specifications in that domain. Koolen et al. (2011) checked one aspect of this expectation by
means of hypothesising that speakers tend to convey more information in a more complex
domain (i.e., people domain) than in a simpler domain (i.e., furniture domain). To test
this idea, they compared the number of superfluous attributes between two domains and
found that, on average, REs in the people domain contain more superfluous attributes.
However, this methodology has two shortcomings: on the one hand, a higher number of
superfluous attributes does not necessarily result in the more frequent use of over-specified
descriptions, for example, because of the existence of numerical over-specifications (which
over-specified without containing any superfluous properties), and because of the existence
of mixed specifications (which are under-specifications that contain some redundancy at
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the same time). Furthermore, Koolen and colleagues didn’t differentiate TYPE from other
attributes when counting the number of superfluous attributes.

We expect that there are a higher proportion of over-specifications in the people domain
than in the furniture domain. To confirm this, we counted the number of over-specification
in MTUNA-NT rather than the number of superfluous attributes. With the definition of
“required /necessary attribute” in §4.4.2, we understand that all of the descriptions that
are annotated as any of real over-specification, nominal over-specification, numerical over-
specification, and duplicate-attribute over-specification are over-specifications, the number
of each of which in MTUNA-NT is shown in Table 4.1, and we then sum up these numbers.
This manner of counting resulted in the number of 188 and 299 over-specifications in the
furniture sub-corpus and the people sub-corpus respectively.

How should non-over-specification be counted? Different approaches are possible.
One way is to count all valid descriptions that are not annotated as over-specification,
which yields 64 and 62 descriptions, respectively. Using a Chi-square test with Yates
correction, we were able to confirm the above hypothesis with moderate significance,
x%(1,N = 613) = 6.1441, p = .0132. However, this way of counting may overlook mixed
descriptions. Therefore, we also tested the above hypothesis (i.e., that there are more over-
specifications in the people domain than in the furniture domain) omitting all descriptions
that do not result in successful communication (i.e., under-specification) and, this time,
we obtained a rejection of the hypothesis, x?>(1,N = 513) = 0.166,p = .6837. This
result is not surprising once one realises that nearly all successful descriptions in both
the furniture and the people corpus were over-specifications: recall that speakers tend to
include a TYPE no matter whether it contributes to distinguishing the target and this biases
the analysis (e.g., Levelt (1993)). Therefore, to obtain a more insightful analysis of how
domain difficulty influences over-specification, we focused on those over-specifications
that are not nominal over-specification, hypothesising that there are more of these over-
specifications in the people domain than in the furniture domain. We, therefore, summed
up all the real over-specifications, numerical over-specifications and duplicate-attribute
over-specifications, resulting in the numbers 84 and 230, for the furniture and the people
sub-corpus, respectively. We once again tested the hypothesis and found that, this time, it
was confirmed with high significance, x?(1, N = 513) = 46.4435, p < .0001.

While a post-hoc analysis of this kind — where different definitions of key phenomena
are attempted — has to be treated with some caution, these results at least demonstrate how
different insights can be gleaned depending on what kind of over-specification one wants to
focus on.

Likewise, we analysed the ETUNA using the same strategy and obtained the same
results. That is, 1) There are more over-specifications in the people domain than in the
furniture domain, )(2(1, N = 470) = 6.80, p < .01; 2) Within successful communications,
there are significant more real over-specifications in the people domain than in the furniture
domain, x?(1, N = 396) = 39.72, p < .0001.

The Use of Under-specifications

Another type of analysis concerns under-specification. We investigated whether domain
difficulty influences the use of under-specification, that is, Are speakers less likely to single
out the target object when the domain is more complex? To find out, we counted the
descriptions that were annotated as under-specification in MTUNA-NT, and obtained 55
and 45 under-specifications for furniture and people corpus, respectively. Surprisingly,
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this does not only lead us to reject our hypothesis but, surprisingly, even suggests that
the situation is the other way around, Xz(l, N = 613) = 9.5237, p = .0020. To understand
why this happened is a topic for further research. Yet, the current results (15.74% of
descriptions in MTUNA-NT are under-specifications) at least show that the role of under-
specifications cannot be ignored when analysing REs. The same result is also found in
ETUNA (x2(1,N = 470) = 15.14, p = .0001).

Comparing ETUNA and MTUNA

Regarding RQla, we compare the results of MTUNA-OL and ETUNA. In RQla, we
expect that there are more over-specifications in ETUNA than in MTUNA and meanwhile
there are more under-specifications in MTUNA than in ETUNA. However, both of these
two hypotheses are rejected, i.e., there is no difference in the use of over-specification,
X*(1,N = 758) = 3.19,p = .743, the use of real over-specifications out of successful
communications, )(2(1, N = 643) = 1.03, p = .3095, and on the use of under-specification,
X*(1,N = 758) = 0.31,p = .5742.

Further Observations

By looking into the annotated dataset, we also have several post-hoc observations:

Duplicate-attribute over-specification. In the whole singular part of the MTUNA-NT
corpus, we observed only 5 duplicate-attribute over-specifications. In all these cases,
duplication happened when a speaker used one single word to express multiple attributes.
Consider the following example in MTUNA-NT:

(64) FE W KE
nidnldo de zhdngzhé
‘the old old person’

where the word “£%” (zhdngzhg; old) express both AGE and TYPE of the target. Given the
small number of cases, this observation needs to be handled with caution, of course.

Numerical Over-specification. We were also curious about the number of specifications
that use the numerical over-specification as their description bases. Out of 17 trials of
MTUNA, 7 trials allows numerical over-specification, all of which are in the people domain
(which explains the fact that no numerical over-specification is found in the furniture
domain (see Table 4.1)). 83 out of 260 REs (approximately 31.92%) are built around either
numerical over-specifications or numerical over-specified.

Under-specification. As we can see from the Table 4.1, 15.74% and 14.23% descriptions in
MTUNA-OL and ETUNA are under-specifications, which is much higher than the previous
reported proportions (e.g., Koolen et al. (2011) reported 5%). In other words, approximately
16% of the descriptions used for evaluating the human-likeness of the machine-generated
description cannot result in successful communications. In light of earlier discussions of
under-specification (e.g. Ferreira et al. (2005), Koolen et al. (2011), and Pechmann (1989)),
this finding was surprising, which is why we discuss it further in §4.5.5.
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4.4.7 Discussion

The role of context

As was mentioned briefly at the beginning of this chapter, the work described in this
chapter has looked at REs in isolation from their context of use. This has allowed us to offer
precise definitions of all the key notions involved, such as the notion of under-specification,
and various notions of over-specification. When the context of use is taken into account,
things can become more challenging. A simple example, where the relevant context is very
local, is offered by Stone and Webber (1998), who discuss a situation involving two hats
and two rabbits, with one of the two rabbits sitting in one of the two hats. In this situation,
one can say “the rabbit in the hat". The expression “the hat" is arguably a minimally
distinguishing description. For even though the situation involves more than one hat, the
NP as a whole makes it clear which hat is being referred to, and this is what legitimises
the use of the definite article.

When the wider context is taken into account, it is extremely common for an NP to be
under-specified in isolation (i.e., when only the NP itself is taken into account) whereas,
in fact, it is a distinguishing description. For example, when we say “My father bought
a dog; the dog eats sausages", the NP “the dog" is under-specified in isolation, but fully
specified (i.e., a distinguishing description) when the sentence as a whole is taken into
account. These phenomena can also involve aspects of the wider context into account,
including even the speaker’s and hearer’s background knowledge and opinions. These
phenomena are widely discussed and described, in both the theoretical (e.g., Pogue et al.
(2016)) and the computational literature (e.g. Krahmer and Theune (2002)).

Our point here is that, firstly, all the concepts discussed in the present study can, in
principle, be generalised to take context into account. For example, consider our definition
of Distinguishing Description: its informal part requires that such a description “singles
out r from all other elements of C". This idea remains valid when the context of the use of
the description is taken into account. However, the same is not true for the formal part
of the definition, which requires that [P;]] N ... N [P,] = {r}, since this narrow definition
would judge “the dog" (in our example above) not to be a distinguishing description, which
would go against the aim of capturing whether or not a description manages to identify its
intended referent.

Second, although we believe that it would be interesting to generalise (the precise part
of) our definitions in such a way that contextual information can help to “disambiguate”
an RE (i.e., contextual information makes the RE distinguishing), to apply these new
definitions in a new annotation scheme would be far less straightforward, because it would
be up to the annotators to decide whether (for example) a given NP, in a given context
of use, manages to “single out" the referent. Undoubtedly, different annotators would
sometimes resolve such questions differently, in which case one might design protocols for
reaching a consensus annotation as is often done when pragmatic information is entered
by human annotators (Gatt et al., 2008).

A behavioural perspective on these issues was offered by Arts (2004, Chapter 4), who
argued that the second rule of the Gricean Maxim of Quantity is violated if and only if
the time that recipients need to identify the intended referent (i.e., identification time)
is increased. She showed experimentally that an apparently over-specified RE (like “the
round button on the right", when the situation contains only one round button) can actually
speed up the identification process; she concluded that, therefore, this expression does
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not break the second rule of Gricean Maxim of Quantity. Arts’ perspective suggests that
annotators might be asked questions such as “Tick this box if you believe that the author could
have used an alternative RE, which you would have understood substantially faster. If so, then
please suggest such an alternative RE." How workable such an annotation scheme would
be, and to what extent annotators would agree with each other about their annotation
decisions, is a matter for further research.

A computational perspective was offered by Dale and Reiter (1995), who proposed an
algorithm, called the Incremental Algorithm, which often produces REs that our definitions
would classify as Real or Nominal over-specifications. However, if this algorithm is accepted
as an implementation of the Gricean Maxims — as the authors proposed — then one would
have to call such REs Minimally Specified because they distinguish the intended referent
without using any properties that the algorithm considers to be superfluous.

Third, our empirical work in §4.4.6 stays clear of these “contextual" complications,
because the TUNA experiments were constructed in such a way that the descriptions in
them (i.e., the NPs produced by the participants in the elicitation experiment) had to
identify the referent by themselves, instead of relying on the wider context. This was
achieved by offering participants simple, artificial situations that bear no resemblance to
everyday situations, and by asking them to produce NPs in isolation (answering “Which
object/objects appears/appear in a red window?").

Limitations of the Present Analysis

In this study, we have used the English ETuNA corpus and the Chinese MTUNA corpus
to illustrate the benefits of the new way in which we propose to look at the ways in
which an RE can single out (or fail to single out) its target referent. Although this
illustration has been enlightening, we are aware that the above-mentioned corpora have
some important limitations. For example, they are not optimal for investigating numerical
over-specification. Most trials in ETuUNA and MTUNA simply do not allow numerical over-
specification. Another example is that since TUNA experiments used abstract scenes, almost
all properties have crisp meanings. In TUNA, when saying “large chair”, we (and the REG
algorithms) know exactly which distractors the property “large” can single out. However,
in realistic scenarios, “large” is a gradable property. Therefore, the meaning of “large” is
vague (see van Deemter (2012), van Deemter (2016, Chapter 9)) and is context dependent.
This poses challenges for applying our new perspective on referring expressions with
gradable properties.

If we look into those trials that do allow numerical over-specification'®, we found that
83 out of 260 descriptions actually were built around numerical over-specifications. A
similar issue also applies to other types of over-specifications, such as duplicate-attribute
and lack-of-syntactic-aggregation over-specifications. For a similar reason, although the
annotated corpora also record different types of superfluous attributes, such as the TYPE
and duplicated attributes, we cannot make any further conclusions or conduct more fine-
grained analysis on how much and what “additional information” is conveyed on biased
results on the current two corpora.

In addition, we tried our best to do a fair comparison between Mandarin and English
by, for example, using only trails that overlap in two corpora. Nevertheless, we cannot

Four trials in the people domain of MTUNA allow numerical over-specification; these four are associated with 180
descriptions in total.
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Attribute Possible Values Freq.

TYPE chair, sofa, desk, fan 347
COLOUR blue, red, green, grey 326
ORIENTATION front, back, left, right 185

SIZE large, small 141
X-DIMENSION 1,2,3,4,5 5
Y-DIMENSION 1,2,3 5

OTHER - 10

Table 4.2: Attributes and their values for REs in furniture domain. Freq. is the frequency of
that attribute in MTUNA.

Attribute Possible Values  Freq.

TYPE person 278
AGE young, old 74
ORIENTATION  front, left, right 6
hasBeard 0,1 169
beardColour dark, light 95
hasHair 0,1 116
hairColour dark, light 100
hasGlasses 0,1 165
hasShirt 0,1 14
hasTie 0,1 26
hasSuit 0,1 60
X-DIMENSION 1,2,3,4,5 6
Y-DIMENSION 1,2,3 6
OTHER - 151

Table 4.3: Attributes and their values for REs in people domain.

say any last word here since this study is not a language comparison work and many
experimental settings of MTUNA and ETUNA are different. Therefore, in the future, a
careful language comparison study can be conducted whose results could be analysed
based on our scheme.

4.5 Study 2: Computational Modelling of Referring Expressions

4.5.1 Annotating the Semantics

In what follows, we introduce how we annotate the MTUNA and the ETUNA corpora. In
order to conduct certain analyses as well as evaluate REG algorithms, we need to annotate
the semantics (i.e., which properties are used) of each RE in these corpora.

1650 REs were semantically annotated (after omitting some unfinished REs from the
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{ "sno": "Object",
"subject_id": "2",
"object": [

{ "attributes": [
{"name": "COLOUR",
"value": "dark"
¥e
{"name": "TYPE",
"value": "table"
]
1,
"trial_id": "1i",
tutt": "IRETF
}

Figure 4.8: An example annotated data sample from MTUNA4, for the RE K& (huizhuo-
zi;grey table).

corpus) following the scheme of van der Sluis et al. (2006). '® For simplicity, instead of
XML, we use JSON for the annotation. Because the scenes stay the same when different
subjects accomplished the experiment, we annotated the scene and the REs in MTUNA
separately. For the attribute hairColour, both van der Sluis et al., 2006 and Gatt et al.
(2008) (and all the annotate scheme used by the previous TUNA corpora) annotated both
hair colour and beard colour as hairColour. However, this would cause us to overlook
some key phenomena because some participants used the colour of a person’s beard to
distinguish the target. Therefore, we decided to use hairColour and beardColour as
separate attributes. As pointed out in van Deemter, Gatt, Sluis, et al. (2012), since the
attribute hairColour depends on hasHair, the authors merged these two into a single
attribute Hair during the evaluation. We did the same thing and obtained two merged
attributes: Hair and Beard.

To avoid compromising the comparison between MTUNA and ETUNA, we did not only
annotate MTUNA but also re-annotated the ETUNA corpus, using the same annotators. The
attributes and corresponding values we used in our annotation (annotating the MTUNA
and re-annotating the ETUNA) are shown in Table 4.2 and 4.3 for furniture and people
domain, respectively. An example of the annotated RE sample in MTUNA is shown in
Figure 4.8.

4.5.2 Evaluating Classic REG Algorithms

This subsection is to answer RQ2 (i.e., how classic REG algorithms perform on MTUNA and
how this is different from the performance on ETUNA?). We examine a number of REG
algorithms on MTUNA and ETUNA. We then report and analyse the experiment results.

This includes the trials that have one target referent and those that have two targets, but, in this paper, we focus
on the former one.
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FURNITURE ProPLE
Model DICE (SD) PRP Model DICE (SD) PRP

IA-COS  0.875(0.17) 55.7 IA-GBHOATSS 0.637 (0.26) 16.3
IA-CSO  0.847 (021) 55.1 IA-BGHOATSS 0.629 (0.25) 15.5
IA-OCS 0797 (0.16) 205 IA-GHBOATSS 0.617 (0.25) 13.0
IA-SCO 0754 (0.18) 15.0 IA-BHGOATSS 0577 (0.24) 7.5
IA-OSC  0.740 (0.20) 18.3 IA-HGBOATSS 0.589 (0.23) 6.1
IA-SOC  0.690 (021) 147 IA-HBGOATSS 0.559 (0.24) 6.1
- - - IA-SSTAOHBG 0.347(0.23) 1.9

FB+TYPE 0.830 (0.18) 39.9 FB+TYPE 0.669 (0.26) 232
FB 0574 (0.25) 3.0 FB 0446 (0.32) 9.9
GR 0.802 (021) 393 GR 0.613 (0.29) 19.9

Table 4.4: Experiment results on MTUNA, in which the string after each IA algorithm
represents the preference order it uses. For example, “COS” means COLOUR > ORIENTATION
> SIZE and “BGHOATSS” stands for hasGlasses > BEARD > HAIR > ORIENTATION > AGE
> hasTie > hasShirt > hasSuit.

Experimental Settings

Algorithms. We tested the classic REG algorithms, including 1) the Full Brevity algo-
rithm (FB Dale, 1989): an algorithm that finds the shortest RE; 2) the Greedy algorithm (GR
Dale, 1989): an algorithm that iteratively selects properties that rule out a maximum
number of distractors (i.e., a property that has the highest “Discriminative Power”); and 3)
the Incremental Algorithm: an algorithm that makes use of a fixed “preference order" of
attributes (IA Dale & Reiter, 1995). See §2.2.1 for a more detailed review.

Evaluation Metrics. We used DICE (i.e., measuring the overlap between the generated
REs and the REs in the corpus) and PRP (i.e., the proportion of times the algorithm achieves
a DICE score of 1) for evaluating attribute choice in REG (see §2.2.1 for more details).

Performance of Algorithms on MTUNA

We report the evaluation results on MTUNA and MTUNA-OL in Table 4.4 and Table 4.5. For
the FB algorithm, we tested both the version that does not always append a TYPE (named
FB in the rest of this chapter) and the version that does always append a TYPE (named
FB+TYPE). Moreover, since we did not observe any significant difference in the frequencies
of use of each attribute between MTUNA and ETUNA corpora, we let the IA make use of
the same set of preference orders as van Deemter, Gatt, Sluis, et al. (2012).

In line with the previous findings in other languages, in the furniture domain, it is IA
(with a good preference order) that perform the best in both MTUNA and MTUNA-OL.
Interestingly, the people domain yields very different results: this time, FB+TYPE becomes
the winner.

An ANOVA test comparing GR, FB+TYPE, and the best IA suggests a significant ef-
fect of algorithms on both domains and on both MTUNA and MTUNA-OL (Furniture:
F(2,1008) = 49.20, p = .002; People: F(2,1065) = 11.97,p < .001) and MmTUNA-OL (Furni-
ture: F(2,699) = 14, p < .001; People: F(2,622) = 4.22, p = .015). As for each algorithm, by
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FURNITURE PEOPLE
ETUNA MTUNA-OL ETUNA MTUNA-OL
Model DICE (SD) PRP  DICE (SD) PRP  Model DICE (SD) PRP  DICE (SD) PRP
IA-COS 0.919 (0.12) 62.8 0.915 (0.14) 65.5 IA-GBHOATSS 0.862 (0.17) 50.0 0.724 (0.22 22.8
IA-CSO 0.919 (0.12) 628 0.915(0.14) 65.5 IA-BGHOATSS 0.861(0.17) 50.8  0.719 (0.21 21.0
IA-OCS 0.832(0.14) 263 0.823(0.15) 254 IA-GHBOATSS 0.774 (0.20) 273  0.674(0.25 19.6

)
)
)
IA-SCO 0.817 (0.14) 205  0.808 (0.15 19.4  IA-BHGOATSS  0.761 (0.19)  25.0  0.621 (0.22) 7.8
)
)
)

( )
IA-OSC 0805 (0.16) 237 0798(0.17) 238 IA-HGBOATSS 0705 (0.17) 3.8  0.609(0.22) 4.1
IA-SOC  0.782 (o 16) 199 0767 (0.17) 194 IA-HBGOATSS 0.670(0.19) 45 0570 (023) 3.7
- - - - IA-SSTAOHBG 0339 (0.10) 0.0  0285(0.17) 0.0
FB+TYPE  0.849 (0.17) 417 0.849 (0.16) 425 FB+TYPE 0847 (0.17) 447 0734 (0.23) 274
FB 0590 (0.23) 0.6  0602(024) 36 B 0556 (0.16) 2.3 0541 (026) 11.0
GR 0849 (0.17) 417 0849 (0.16) 425 GR 0727 (025) 333  0.650 (0.28) 21.9

Table 4.5: Experiment results on the MTUNA-OL and ETUNA. Algorithms are listed from
top to bottom in order of their performance on ETUNA.

Tukey’s Honestly Significant Differences (HSD), we found that IA defeats other algorithms
in the furniture domain in both corpora (p < .001) and that the victory of FB+TYPE for
people domain is significant in MTUNA (p = .001) but not in MTUNA-OL (p = 0.96).

The scores for algorithms in the people domain are much lower than those in the
furniture domain, even lower than the scores for the people domain in ETuNA. This
may be because, based on the numbers in Table 4.1, a Chi-Squared Test suggests that, in
MTUNA, there are more real over-specifications (x2(1,722) = 55.95, p < .001) but fewer
nominal over-specifications (x?(1,722) = 26.57, p < .001) in the people domain than in the
furniture domain. '/ As for the former, real over-specifications are notoriously hard to
model accurately by deterministic REG algorithms, which is one of the motivations behind
probabilistic modelling (van Gompel et al., 2019) or Bayesian Modelling (Degen et al., 2020);
such an approach might have additional benefits for the modelling of reference in Mandarin.
The relative lack of nominal over-specifications in Mandarin descriptions of people could
be addressed along similar lines, adding TYPE probabilistically. Another evidence is that,
in the MTUNA people domain (abbreviated as MTUNA /People), FB outperforms many IAs
on PRP, which does not happen in the MmTUNA /Furniture.

By comparing the results for MTUNA and MTUNA-OL, we found that the rank order
(by performance) of algorithms stays the same, but the absolute scores for the latter corpus
are much higher. If we look into the annotations for the trials from MTUNA that are not
in MTUNA-OL (see Table 4.2 and Table 4.3), most of these trials have multiple possible
minimal descriptions and numerical over-specifications. Every RE in the corpus that
results in a successful communication can be seen as either a minimal description or a
numerical over-specification, with 0 or more attributes adding to it. When computing the
DICE similarity score between a generated RE and human-produced REs, if it is close
to a minimal description, it will differ from another minimal description. For example,
suppose we have a trial having two minimal descriptions: the large one and the green one.
Our FB produces the second minimal description (as it can only produce one RE at a time).
When we compute DICE, we obtain % for the RE the green chair while 0 for the RE the
large chair, but, in fact, either of them has only one superfluous attribute. This implies
that when a corpus contains multiple minimal REs, this will artificially lower the DICE

This highlights the importance of sub-categorising the different kinds of over-specifications.
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scores. 18 For the same reason, the performance of FB increases a lot from MmTUNA /People
to MTUNA-0L/People because all trials in MTUNA-0OL have only one possible minimal
description. Another reason lies in the decrease in the number of under-specifications from
MTUNA /People to MTUNA-OL/People.

Cross-linguistic Comparison

Table 4.5 reports the results for both MTUNA-OL and ETUNA, from which, except for
the fact that FB+TYPE becomes having the best performance, we see no difference in the
order of their performance. An interesting observation is that, after correcting a few errors
in the annotation of ETUNA (see §4.5.1), the difference between IA and FB+TYPE is no
longer significant in the people domain in terms of Tukey’s HSD (compare the conclusion
in van Deemter, Gatt, Sluis, et al. (2012)). In other words, in both languages, there is
no significant difference between the performance of these two algorithms on the people
domain. We also checked the influence of language on the performance of FB and FB+TYPE:
the influence of the former is significant (F(1,349) = 23.63, p < .001) while that of later
is not (F(1,349) = 0.36, p = .548). This suggests that, in fact, it is English speakers who
show more brevity, except in terms of use of TYPE. This might also explain the differences
in absolute scores for all algorithms in both ETUNA and MTUNA-OL, especially in the
people domain. Another possible reason for these differences is the fact that the REs in
MTUNA-OL show slightly higher diversity in the choice of content than ETUNA4, as the
standard deviation for every model is higher.

4.5.3 The Influence of TYPE

Regarding RQ3, we, on the one hand, expect that there are more superfluous TYPEs in
English than in Mandarin. To test this, we look at the number of REs that uses TYPE in
MTUNA-OL and ETUNA. 98.4% and 95.93% of REs in the furniture and people domains of
ETUNA contain TYPE. For MTUNA-OL, those numbers are 91.29% and 74.77%, suggesting
that Mandarin speakers are less likely to use superfluous TYPE. On the other hand, as
aforementioned, one major difference on the TYPE attribute from other attributes is that
TYPE in the people domain has only one possible value (i.e., man) while in the furniture
domain there are multiple alternatives (e.g., table, chair or sofa). In other words, the
“attribute complexity” of TYPE in the furniture domain is higher than that in the people
domain. Additionally, Lv (1979) suggested that the head of a noun phrase in Mandarin
Chinese is omissible if the omitted head noun is the only possibility given the context (i.e.,
in referring expressions, if omitting the head noun results in a distinguishing description,
then the head noun is omissible). The Chinese speakers are less likely to “always” produce
a superfluous head noun in referring expressions. Therefore, we expect more superfluous
TYPE in MTUNA-OL/Furniture than in MTUNA-0OL/People. In MTUNA-OL, we observed
a smaller proportion of uses of TYPE in the people domain (x?(1,485) = 24.16, p < .001).
Moreover, comparing the performance of REG algorithms on the furniture domain of
MTUNA and MTUNA-OL, the difference is not as huge as that in the people domain. This
implies that the complement of Lv’s hypothesis might also hold, namely, if the value of
TYPE is not the only possibility, then it will not be omitted. We also note that this result is not
saying Lv’s theory is the only reason why there are more “TYPEless” referring expressions in

An analogous problem has been identified in the task of evaluating image capturing (Yi et al., 2020), where the
collision of multiple references for a single image was considered.
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Figure 4.9: Change of the performance with respect to different probabilities of inserting
superfluous TYPE for either the FB+TYPE and IA on either the people domain of MTUNA-OL
and ETUNA.

the people domain. There are other factors that might have impacts here, such as animacy
(i.e., the TYPE is more likely to be dropped for animates than inanimates; Fukumura and
van Gompel (2011) ).

To further assess the role of TYPE in algorithmically modelling REs, we investigated
how introducing uncertainties in whether or not to include a TYPE affects the performance
of REG algorithms for the people domain. We tried out different probabilities, and for
each probability for inserting the TYPE we ran the algorithm 100 times; we report the
average DICE score, drawing the lines indicating the change of performance over different
probabilities in Figure 4.9.

We found that: 1) the decrease in performance on MTUNA-OL is smaller than that on
ETUNA; 2) IA and FB+TYPE have similar performance for Mandarin while IA performs
better for English; 3) The difference between the performance of these algorithms becomes
smaller when the influence of TYPE is ignored (i.e., when the probability of inserting TYPE
is close to zero), especially for the Full Brevity algorithm. On top of these findings, we
observe that although Mandarin speakers are less likely to use superfluous TYPE, always
adding TYPE achieves the best performances for all the algorithms. Such a result may
be caused by the dependencies between the use of different properties. In other words,
introducing uncertainty to only the TYPE cannot sufficiently model the uncertainties in
REG: when to drop a TYPE might also depend on the use of other properties.

4.5.4 The effect of Syntactic Position

For RQ4 (i.e., how syntactic position influences the use of over-/under-specification and
the performance of REG algorithms), we counted the number of real over-specifications
and under-specification in subject and object position. In the MTUNA-OL corpus, there are
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Model Furniture People

IA (subj.) 0.940 (0.11)"  0.728 (0.23)
IA (obj.) 0.890 (0.16)  0.719 (0.21)
GR (subj.) 0.884 (0.13)"  0.629 (0.30)
GR (obj.) 0.815 (0.18)  0.669 (0.25)

FB+TYPE (subj.) 0.884 (0.13)"  0.736 (0.23)
FB+TYPE (obj.)  0.815(0.18)  0.733 (0.22)

Table 4.6: The performance of REG algorithms for REs in different syntactic positions, in
which IA is the IA with highest performance in the previous experiments, i.e., the IA-COS
and IA-GBHOATSS. t indicates that there is significant influence of the syntactic position
on that algorithm in that domain.

247 and 239 descriptions in the subject and object positions, respectively. No significant
difference on the use of over-specifications was found (x?(1,485) = 1.57, p = 0.209) but
a significant difference regarding the use of under-specifications did exist (x?(1,485) =
19.27,p < .001). Considering the fact that there are more indefinite RE in subject posi-
tion (van Deemter et al., 2017), the present finding might suggest that those indefinite REs
are not suitable for identifying a target referent. It appears that further research is required
to understand these issues in more details.

As for the computational modelling, Table 4.6 report the performance of each REG
algorithms on REs at each position. Generally speaking, all algorithms performed better
for REs in subject position than for REs in object position, with one exception, namely
the GR algorithm for the people domain; the difference is significant in the Furniture
domain, but not in the people domain, possibly because the furniture domain contains
more under-specifications.

4.5.5 Discussion

Lessons about RE use

Regarding the “coolness" hypothesis, which focuses on the trade-off between brevity and
clarity, we found that the brevity of Mandarin is only reflected in the use of TYPE but not
in the other attributes, and, interestingly, no evidence was found that this leads to a loss
of clarity; our findings are consistent with the possibility that Mandarin speakers may
have found a better optimum than English speakers. They use shorter REs (by omitting
superfluous TYPE) and, meanwhile, does not breach clarity.

Although Mandarin speakers are less likely to over-specify TYPE, following Lv (1979),
we conclude that TYPE is often omitted if and only if it has only one possible value given
the domain. This appears to happen “unpredictably” (i.e., in one and the same situation,
TYPE is often expressed but often omitted as well). However, we saw that introducing
probability for the use of TYPE alone does not work well. This suggests that, to do justice
to the data, a REG model may have to embrace non-determinism more wholeheartedly, as
in the probabilistic approaches of van Gompel et al. (2019) and Degen et al. (2020).

We found a significant influence of the syntactic position of the RE on the use of
under-specifications and on the performance of REG algorithms. This flies in the face
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of earlier research on REG — which has tended to ignore syntactic position — yet it is
in line with the theory of Chao (1965). It gives rise to various questions: why are more
under-specifications used in subject positions, and why do all REG models perform better
for REs in subject positions than for those in object positions? These questions invite
further studies including, for example, reader experiments to find out how REs in different
positions are comprehended. It would also be interesting to investigate what role syntactic
position plays in other languages, where this issue has not yet been investigated.

From the first study (§4.4), we knew that there is a very substantial proportion, of nearly
20%, under-specified REs in both MTUNA and ETUNA. This was surprising, because, at
least in Western languages, in situations where Common Ground is unproblematic (Horton
& Keysar, 1996), under-specification is widely regarded as a rarity in the language use of
adults, to such an extent that existing REG algorithms are typically designed to prevent
under-specification completely (see e.g., Krahmer and van Deemter (2012)). Proportions of
under-specifications in corpora are often left reported, but (Koolen et al., 2011) reported
that only 5% of REs in pTUNA were under-specifications. '

These findings give rise to the following questions: 1) Why did previous investigators
either find far fewer under-specified REs (e.g., Koolen et al. (2011), see Footnote 8) or
ignore under-specification? 2) How does the presence of under-specification influence
the performance of the classic REG algorithms (which never produce any under-specified
REs, except when no distinguishing RE exists)? and 3) If a REG model aims — as most do
— to produce human-like output, then what is the most effective way for them to model
under-specification?

Lessons about REG Evaluation

Most REG evaluations so far have made use of the DICE score (Dice, 1945), which measures
the overlap between two attribute sets. However, on top of the discussions of van Deemter
and Gatt (2007) and of this study, we identify the following three issues for evaluating REG
with DICE. First, if a scene has multiple possible minimal descriptions or numerical over-
specifications, then this causes DICE scores to be artificially lowered and hence distorted.
Second, there is no guarantee that an RE with a high DICE score is a distinguishing
description. Third, DICE punishes under-specification more heavily than over-specification.
Suppose we have a reference RE 4 which uses n attributes, a over-specification d, with one
more superfluous comparing to d (so it uses n + 1 attributes), and a under-specification 4,
which can be repaired to d by adding one attribute (using n — 1 attributes), the DICE score
of d, is 2n/(2n + 1) while d,,’'s DICE is 2n —2/(2n — 1). In other words, d, has a higher
DICE than d,,. Whether this should be considered a shortcoming of DICE or a feature is a
matter of debate.

Finally, our analysis suggests that previous TUNA experiments may have been in-
sufficiently controlled. For example, some trials in MTUNA and DTUNA use TYPE for
distinguishing the target, causing nominal over-specifications not to be counted as over-
specification. Different trials have different numbers of minimal descriptions and different
numbers of numerical over-specifications. As shown in §4.4.6, these issues impact evalua-
tion results and this might cause the conclusions from evaluating algorithms with Tuna
not to be re-producible.

The difference might be that DTUNA used participants who came into the lab separately, whereas MTUNA
participants sat together in a classroom.
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4.6 SUMMARY

Comparisons between corpora need to be approached with caution, and the present
situation is no exception. For all the similarities between them, we have seen that there are
significant differences in the ways in which the TuNA corpora were set up. 2 Although
these differences exist for a reason (i.e., for testing linguistic hypotheses), we believe that it
would be worthwhile to design new multilingual datasets, where care is taken to ensure
that utterances in the different languages are elicited under circumstances that are truly as
similar as they can be.

4.6 Summary

This chapter focused on the use of one-shot REs in Mandarin Chinese and their computa-
tional models. To this end, we, on the one hand, analysed the use of REs in Mandarin and
compared it with that of English. On the other hand, we built and evaluated REG models
on both MTUNA and ETUNA.

In order to better analyse the use of REs in Mandarin. We proposed a new perspective on
the different ways in which a description can manage to pick out a referent and the different
ways in which it can fail to manage this. This account is more precise than its predecessors
because it offers precise definitions of key notions such as over-specification; it is also
more fine-grained because it distinguishes between different kinds of over-specification;
finally, it is more extensive because it has a place for some varieties of specification (e.g.
wrong specification and duplicate attribute specification) that have often been overlooked.
Building on this new perspective on description and reference, we introduced a matching
annotation scheme. We applied it to the MTUNA corpus (for Mandarin) and the ETuNA
corpus (for English).

By analysing the annotated MTUNA and ETUNA, within each language, we found that
there are more over-specifications in the more complex domains, while, in contrast, there
are fewer under-specifications in the more complex domains. Additionally, we also found
that in both MTUNA and ETUNA, there are non-negligible amounts of under-specifications
(> 15%) which is not in line with previous researches. When using these annotated
corpora, we surprisingly found that there is no significant difference between the use of
over-/under-specifications in ETUNA and MTUNA, which is inconsistent with the idea that
Mandarin speakers prefer brevity to clarity.

In order to build and evaluate REG algorithms, we annotated the semantics of both
ETUNA and MTUNA, and run a number of classic REG algorithms on them. In nutshell,
we found two major differences in the computational modelling of REs in English and
Mandarin. First, the advantage of using IA no longer exists in the people domain in
Mandarin, which is different from that in English. Second, there are different uses of TYPE
in Mandarin and in English. That is there are a great number of “TYPEless” (~ 25%) in
MTUNA /People, which is hard to be handled by classic deterministic REG algorithms.

In the next chapter, we move the focus to another category of REG task: REG in Context,
where context plays a more vital role than studies in this chapter.

Most TUNA experiments involved type-written REGs, but DTUNA elicited spoken REs. In most TUNA experiments
the linguistic context was uniform, but MmTUNA elicited REs in different syntactic positions, as we have seen.
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CHAPTER 5 I

Referring Expression Generation
in Context

Abstract. Mandarin speakers use zero pronouns to make their language pragmatically natural.
In this chapter, we study the use of zero pronouns in the task of Referring Expression Generation
(REG) in context. Specifically, given the context, we included zero pronouns as an option
when determining the referential form and built computational models accordingly. To this
end, we considered two types of models in the present thesis: models that are based on the
rational speech act theory and that are based on deep learning techniques. We conduct three
studies. In the first study, we model the use of anapharic zero pronouns in Mandarin with the
rational speech act model. We then focus on merging the use of zero pronouns into the “REG in
context” task and building neural network based models to tackle a sub-task of REG in context:
Referential Form Selection. Since the task of Referential Form Selection (RFS) has not been
previously explored using neural models, in the second study, we show how to build neural
models to tackle RFS tasked on a well-constructed English REG in context corpus and conduct
an interpretability study to understand what had these neural models learnt. In the last study,
we extend the second study to RFS in Mandarin, where we construct a Chinese RFS corpus
that includes zero pronouns and adopts models used in the second study accordingly.

The publications related to this chapter are:

1. Chen, G., van Deemter, K., & Lin, C. (2018). Modelling pro-drop with the rational
speech acts model. Proceedings of the 11th International Conference on Natural Language
Generation, 159-164. https://doi.org/10.18653/v1/W18-6519

2. Chen, G., Same, F., & van Deemter, K. (2021). What can neural referential form
selectors learn? Proceedings of the 14th International Conferenice on Natural Language
Generation, 154-166. https:/ /aclanthology.org/2021.inlg-1.15
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REFERRING EXPRESSION GENERATION IN CONTEXT

5.1 Introduction

In light of the coolness hypothesis (see §3.1 and C.-T. J]. Huang (1984)), Mandarin is a
“cool” language and makes liberal use of zero pronouns (ZP). The analysis of L. Wang et al.
(2018) on a large Mandarin-English parallel dialogue corpus shows that 26% of the English
pronouns are dropped in Mandarin. Example (38) exemplify zero pronouns in Mandarin,
we hereby repeat the example. Considering the question “{R4 K& WK T 2" (Did you
see Bill today?). A Chinese speaker can respond in a variety of shorter expressions which are
equivalent to “F & WM T (Yes, I saw him), for example, “QF WAHL T (Yes, @ saw him), “F
ENDT” (Yes, I saw @), or even “QFE MWD T " (Yes, @ saw @). Here the @ symbol indicates
the place from where a pronoun appears to have been “dropped" from a full sentence.

Generating zero pronouns (only) where they are appropriate is a difficult challenge
for Referring Expression Generation in Context (recall that given a text whose referring
expressions (REs) have not yet been generated and given the intended referent for each of
these REs, the Referring Expression Generation in Context task is to build an algorithm
that generates all these REs; abbreviated as REG in this Chapter), and more specifically for
the task of choosing referential form, a key step in the classic Natural Language Generation
(NLG) architecture (Reiter & Dale, 2000). Traditionally, choosing referential form is framed
as modelling speakers’” behaviour of deciding whether entities are referred to using a
pronoun, a proper name, or a description. However, for “cool” languages, an extra option,
namely of choosing a zero pronoun, needs to be added (Yeh & Mellish, 1997) for fully
simulating speakers’ behaviour.

To this end, we conducted three studies. In the first study, we focused only on the use of
ZPs in Mandarin, i.e., choosing between ZPs or overt REs. Concretely, we model the use of
ZPs with the Rational Speech Act (RSA) model (Frank & Goodman, 2012) by assuming that
Mandarin speakers tend to choose a ZP if it is salient enough for successful communication.
The idea of discourse salience has closely related to the concept of prominence status
introduced in §2.2.2. Usually, a referent is more salient in the discourse if it is prominent.
In this study, we tested our model on the OntoNotes dataset and were concerned with
merely the Anaphoric ZPs (AZPs).

Subsequently, we integrated the use ZPs with the use of other referential forms (i.e.,
pronoun, proper name, and description). In other words, we turned to the tasks of
Referential Form Selection (RFS) in Mandarin. In earlier works, computational linguists
linked REG to linguistic theories and built English RFS systems on the basis of linguistic
features. For example, Henschel et al. (2000) investigated the impact of 3 linguistic features
namely recency, subjecthood, and discourse status on pronominalisation, i.e. deciding
whether the RE should be realised as a pronoun. Using these features, they used the notion
of local focus as a criterion for detecting the set of referents that can be pronominalised.
The same holds for feature-based models (see Belz et al. (2010) for an overview) where
models are trained on linguistically encoded data. More recently, people have started to
look at deep learning-based models. For instance, Cao and Cheung (2019), Castro Ferreira,
Moussallem, Kadér, et al. (2018), and Cunha et al. (2020) proposed to generate REs in an
End2End manner (determine the referential form and the content simultaneously) without
any feature engineering (see §2.2.2 for more details). They all used a benchmark dataset
called webNLG. The evaluation results suggested that these neural methods perform well
in producing fluent REs. However, directly generating REs make us lose the track of
how well these neural models simulate human behaviours as most theoretical bases about
reference are merely related to the choice of referential forms.
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Since there has been no previous work on neural based RFS, and there is only an
RFS dataset for English, in the second study, we decided to first focus on neural RFS in
English. Specifically, we built neural based RFS models and evaluated them on a well-
constructed English REG in Context (in the rest of this chapter, we use REG to represent
the task of “REG in Context”) corpus (i.e., the webNLG corpus). On the basis of theories
of discourse salience/prominence status, through using probing classifiers, we conducted
interpretability research in order to understand what information that impact prominence
status can a neural RFS learn. In the last study, we extended what we have done to model
RFS in Mandarin. We started with building a Mandarin RFS dataset using the OntoNote
corpus used in the first study. We then tested and probed neural RFS models on the
constructed dataset.

5.2 Study 1: Modelling Pro-drop with the Rational Speech Act Model

In this study, we model the use of zero pronouns in Chinese with the RSA model (Frank &
Goodman, 2012) by assuming that speakers tend to choose a ZP if it is salient enough for
successful communication (see §5.2.1). For computing discourse salience, we focus on ZPs
that are recoverable, meaning that they either refer anaphorically to an entity mentioned
earlier in the text (i.e., anaphoric ZPs, or AZPs for short), or to the speaker or hearer (i.e.,
deictic non-anaphoric ZPs or DNZPs for short) (Zhao & Ng, 2007); a ZP is unrecoverable if
it cannot be linked to any referent, for example:

(65) ©H = Tl EFrEOR BiH X It

There are 23 high-tech projects under development in the zone

in which the @ cannot be recovered.

5.2.1 Background

Pro-drop raises challenges for a number of NLP tasks including, machine translation (MT),
co-reference resolution, and REG. When translating from a pro-drop language, recovering
the dropped pronouns of the source language can improve the overall performance of
MT L. Wang et al., 2018; L. Wang et al., 2016. Co-reference resolution of ZPs has been
widely explored with a variety of techniques including the centring theory (Rao et al.,
2015), statistical machine learning (C. Chen & Ng, 2014, 2015; Zhao & Ng, 2007), deep
learning (C. Chen & Ng, 2016; Yin, Zhang, et al., 2017; Yin, Zhang, Zhang, et al., 2017)
and reinforcement learning (Yin et al., 2018). REG of ZPs for “cool” languages has been
addressed through rule-based methods (Yeh & Mellish, 1997) including centring theory (for
Japanese; Yamura-Takei et al. (2001)), but we are not aware of any testable computational
account. ! We offer such an account, along probabilistic lines.

Some discourse theories suggest that speakers choose referring expressions (REs) by
considering discourse salience (Givén, 1983), i.e., speakers tend to choose pronouns if they
believe the referent is highly salient. The intuition behind is that a highly salient referent
tends to be highly prominent in the mind of the speaker and/or hearer. Orita et al. (2015)
shared a similar view and argued that highly salient REs are highly predictable, so they are
referred with pronouns (as opposed to full NPs) more often than the less salient ones.

E.g., Yeh and Mellish (1997) did not offer a precise definition of some of the syntactic constraints and the notion
of salience that they were using.
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A theory that is sometimes used for explaining the relation between discourse salience
and human choice of referential forms is Uniform Information Density (UID) (Jaeger &
Levy, 2007). UID asserts that speaker tends to optimise information density (quantity of
information) of the utterances to achieve optimal communication. In other words, speakers
tend to drop a RE when the referent of the RE is predictable (or recoverable), and vise
versa.

Apart from salience, production cost (Rohde et al., 2012) and the listener models (Bard
et al., 2004), meaning the models that how speakers model listeners” interpretation of the
utterance, also have impact on language production. It suggests to us that the salience of
the referent may not be enough for modelling speakers’ choice. The RSA model (see §5.2.3)
used in this study is possible to take all these factors into consideration.

5.2.2 The Rational Speech Acts Model

We briefly introduced the RSA model in the §2.2.2. We hereby explain it again. In realm
of NLP, the RSA model (Frank & Goodman, 2012) has been used for a variety of tasks
including modelling speakers’ referential choice between pronouns and proper names
(Orita et al., 2015), the selection of attributes for referring expressions (Monroe & Potts,
2015), and the generation of colour references (Monroe et al., 2017; Monroe et al., 2018). The
key idea of RSA is to model human communication by assuming that a rational (pragmatic)
listener L; uses Bayesian inference to recover a speaker’s intended referent r for word w
under context C. In this way, RSA claims to offer not only accurate models, but highly
explanatory ones as well. Formally, L; is defined as

So(wl|r,C)P(r,C)
Yrec Ps(wlr’,C)P(r',C)’

where 1’ denotes a referent in context C, P(r,C) represents the discourse salience of  in the
context C, and Sy is the literal speaker model defined by an exponential utility function:

Li(rs|lw,C) = (5.1)

where I(w;r,C) is the informativeness of word w, C(w) represents the speech cost. Note
that, here, we replace the P(w;r,C) in Equation 2.10 with a more accurate measure:
informativeness I(w;r, C).

Orita et al. (2015) extended the RSA by assuming that speakers estimate listener’s
interpretation of the (form of) RE w based on discourse information. The speaker chooses
w by maximising the listener’s belief in the speaker’s intended referent r in relation to the
speaker’s speech cost C(w), where the cost is estimated according to the complexity of the
utterance, such as the length of w:

S1(0}) o La(rfo) - s
So(w|r, C)P(r) 1

(5.3)

~ Y So(wlr,C)P(r") " C(w)

Here L (r|w) estimates the informativeness of w, and So(w|r, C) estimates the likelihood
(according to the speaker) that the listener guesses that the speaker used w to refer to r.
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5.2.3 Modelling Pro-drop with the RSA Model

We model the decision of whether to use a ZP based on the formulation expressed in
Equation 5.3. The speaker model is S1(z|r), which is the probability that the speaker uses
ZP (i.e., drops the RE). We assume that the speaker makes a binary choice (i.e., z = {1,0}),
with z = 1 indicating a ZP and z = 0 indicating a non-zero form of RE (NZRE). Note that
whether the speaker uses a pronoun or a proper name is not in the scope of this model. To
simulate the speaker’s choice, we need to estimate the dropping probability Sy(z|r), the
discourse salience of the referent P(r), and the cost C(z).

According to the UID theory (see §5.2.1), if a RE is recoverable, then the speaker prefers
a ZP over a NZRE to maximise the information density since a ZP is shorter than any other
referential form. In that sense, we follow Orita et al. (2015) to estimate the cost function C(z)
based on the length of the RE, i.e., the total number of words the RE contains. However,
the length of the NZRE is not known in advance, thus we use the average length of a set of
REs W instead:

C(z = 0) = average_length(W) +1 (5.4)

We experimented with two ways of calculating the average length:

1. global average length, meaning that WV is the set of all referring expressions in the
corpus; and

2. local average length, in which W is the set of expressions that can refer to referent r.
For instance, if r is “Barack Obama”, then given a corpus for computing local average
length in which Fe is referred to, VW might be the set {Barack Obama, Obama, he, former
president }.

The cost of a ZP is always C(z = 1) = 1, which means no discount on P(z = 1|w) and the
plus 1 in Equation 5.4 is to make the cost of choosing NZRE different from choosing ZP if
W only contains pronouns (i.e., if length equals to 1).

We assume that the dropping probability So(z|r) is dependent on whether the referent
r is one of the participants in the dialogue (i.e., speaker or listener). For example, in the
OntoNotes corpus, 30% of maximally salient entities are dropped, which is much higher
than the 10% dropping rate of non-maximally salient entities. If r is one of the participants,
we call it maximally salient entity (denoted as s). Otherwise, 75 is called non-maximally salient
entity (denoted as ns). This assumption causes AZP and DNZP to have different proportions
in the predicted results. Suppose P(z = 1|rs = ns) = a and P(z = 1|rs =s) = b, then we
have a < b, which implies that the speaker thinks the listener expects a maximally salient
entity (i.e., speaker or listener).

Let « = ¢ be the dropping ratio, then the probability of dropping a noun phrase that
refers to the speaker is:

S1(ZP|Speaker) o« L (Speaker|ZP) -

So(ZP|Speaker) P(Speaker) - 1
T, SZPMPY)  CE=1)
NSpeaker 1

- o - NNS + Ns . C(Z = 1) (55)
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P(Speaker) is the salience’ of the speaker. In general, we take the salience of a referent
x to be in proportion to Ny, which is the number of times that x has been referred to in
the preceding discourse, hence the use of Nspearer, N5, and Nys in the equation. Note that
Ns + Nys is the total number of REs in the preceding discourse.

Equation 5.5 shows that modelling the dropping probability for maximally salient
entities and non-maximally salient entities differently acts as a discount for the number of
referents that the ZP can refer to when predicting DNZP. Similarly, using the dropping
ratio «, the dropping probability for a noun phrase that refers to a non-maximally silent
entity r,s is estimated as:

S1(ZP|rys) = (5.6)
which can be seen as adding a penalty.

The frequencies counted above are all based on the whole preceding discourse of a
referent, which might not be reasonable for predicting ZPs. We hypothesise that the
informativeness of a ZP depends on only a part of the preceding context. We tested two
possible set-ups. One is setting a discourse window to limit the number of sentences that
the simulator can look back to. The other uses the idea of recency (Chafe, 1994). Following
Orita et al. (2015), we replace each count with:

Count(r;,1j) = gdlrimj)/a, (5.7)

where 7; is the same referent as the r; that has previously been referred to and d is the
number of sentences between two REs. Instead of taking the direct raw count 1, Count(r;, r;)
decays exponentially with respect to how far it is from the predicting RE. The RE that has
larger distance contributes less to the overall count of that referent.

For NZREs (z = 0), we assume that the number of times that the referent has been
referred to is equal to the total number of referents referred to by that NZRE. Thus, the
speaker believes that the listener can always resolve the reference by giving them a NZRE.
In other words, their informativeness equals 1.

5.24 Experiments
Experiment Settings

Dataset. We tested our model on the Chinese portion of OntoNotes Release 5.0 data (E.
Hovy et al., 2006)°. Documents in the corpus come from six sources, namely Broadcast
News, Newswires, Broadcast Conversations, Telephone Conversations, Web Blogs, and
Magazines. It has been widely used in (ZP) co-reference resolution tasks. The corpus
contains 1,729 documents, including 143620 referring expressions. In Table 5.1, there is the
basic statistics about the recoverable zero pronouns in OntoNotes corpus.

Baseline. In this work, we used the modified rule 1 in Yeh and Mellish (1997), i.e., the
RE in the subject position will be a ZP if it was referred to a referent in the immediately
preceding sentence, as the baseline. The modification is inspired by the fact that 99.2% ZPs
in OntoNotes corpus are in the subject position.

Our use of the term salience is similar to E. Hovy et al. (2006)’s use of “recoverability".
The OntoNotes dataset is available at: https://catalog.ldc.upenn.edu/1dc2013t19.
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5.2 STUDY 1: MODELLING PRO-DROP WITH THE RATIONAL SPEECH ACT MODEL

# of Recoverable Zero Pronouns 17,129
# of Anaphoric ZPs 14,675
# of Deictic Non-anaphoric ZPs 2,454

Table 5.1: Basic statistics of different types of recoverable ZPs in OntoNotes.

Discourse Model Cost Total Acc. ZP Acc. AZP Acc. DNZP Acc. NZRE Acc.
- baseline - 78.57 40.88 42,90 28.81 83.67
full global 77.10 46.16 38.34 92.95 81.29
Discourse Window local 81.79 22.53 25.50 4.81 89.81
droppine ratio | 8lobal 77.05 43.77 41.88 55.09 81.56
PpIng local 81.44 23.67 27.09 3.19 89.26
cull global 75.64 50.56 43.08 95.35 79.03
Recenc local 80.08 25.36 28.81 4.77 87.49
Y dropping ratio _8lobal 74.04 50.26 48.29 62.02 78.04
OppIng ratio —1oal 79.26 2747 31.63 26 36.28
full global 86.24 8.35 5.18 27.30 96.79
Whole local 86.67 3.67 427 0.08 97.91
droppine ratio | 8lobal 86.13 6.23 6.38 5.33 96.95
PPIg ratio — 1,ca1 86.61 3.84 447 0.04 97.81

Table 5.2: Accuracy of each model, recall that AZP and DNZP are two sub-categories of
ZP.

Experiment Results

Table 5.2 shows the results (reported in accuracy) of various models on the OntoNotes
dataset. The dropping ratio & was empirically set to 0.1 and the decay parameter a of
recency was set to 0.8. The window size was 1, so the simulator only looks at the current
sentence and preceding sentence.

As expected, the models that look back to the whole preceding discourse perform badly
on predicting ZPs (i.e., 8.35% of accuracy), especially DNZPs. They tend to predict all REs
as NZREs, which even performs worse than the model using simple rule (i.e., the baseline).
In contrast, limiting the discourse history by applying discourse windows or replacing
frequency with recency have a negative impact on predicting NZREs, more specifically
pronouns. Such an impact is caused by the idea that every NZRE can always be resolved
by the listener, which is not correct for pronouns. However, so far, we cannot calculate
the informativeness of pronouns properly since we do not know which referent (speaker
or listener) a deictic pronoun in the corpus refers to. For example, in the corpus, both
the speaker and listener will use “I” to refer to themselves, so we don’t know whether
“1” refers to the speaker or the listener. This setting will lead to over-estimation of the
informativeness of pronouns. Additionally, computing cost by average length (as we do)
over-estimates the costs of pronouns, whose lengths are generally shorter than proper
names.

The baseline model’s performance is not bad, especially for predicting AZPs. This
is partly because the rule predicts that all REs in object position are NZREs* and this is
nearly always correct. At the same time, if the referent was referred to in the immediately
preceding sentence (as the baseline model requires), then it is clearly more salient than if it

4 Recall that 99.84% REs in object position are NZREs.
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wasn’t. The baseline model is therefore quite similar to the model with discourse window,
but its decisions are made in a simpler way (i.e., based on a simple "if-then" rule).

With respect to overall accuracy for predicting ZPs and NZREs, models with recency
perform similarly to those that use a discourse window. However, recency offers better
prediction on AZPs. Adding a dropping ratio could significantly improve the performance
on predicting DNZPs without decreasing the accuracy of AZPs and NZREs very much
(i.e., accuracy increase from 62.02% to 95.35%). For the choice of cost function, we found
that using global average length is the best.

5.2.5 Discussion

This study has explored the possibilities of using the RSA model for probabilistic simulation
of speakers’ use of ZPs (i.e., pro-drop), and investigated factors that influence speakers’
choice. Our model performs respectably yet, as mentioned in §5.2.4, it under-estimates the
probability of choosing a pronoun. Solving this problem will require a more fine-grained
annotation of the corpus, indicating which person each occurrence of the deictic pronouns
“1” and “you” refers to.

5.3 Study 2: Neural Referential Selection in English

Following on from the first study, we turn to take other referential forms into considerations,
including pronoun, proper name, description and demonstrative, and to make use of
advanced learning from data techniques, i.e., deep learning. In other words, we tackle the
task of RFS using neural network based models. However, as aforesaid, there has been no
previous work on Neural RFS and there has been no existing REG (in Context) dataset in
Mandarin. Therefore, in this study, we introduce the task of RFS on the basis of an English
REG corpus: the webNLG corpus and propose a number of neural models to tackle the
task by adopting the state-the-of-the-art neural REG model of (Castro Ferreira, Moussallem,
Kédar, et al., 2018).

In addition, neural models are always considered black-boxes. It was unclear to
what extent these neural models can encode linguistic features, and, thus, it was hard
to link the behaviours of these neural models to linguistic theories of reference (see
§2.2.2 for more details). To conduct a model inspection, we make use of the probing
classifiers. Using probing tasks is a well-established method to analyse whether a model’s
latent representation encodes specific information. This approach has been widely used
for analysing models in machine translation (Belinkov, Durrani, et al., 2017), language
modelling (Giulianelli et al., 2018), relation extraction (Alt et al., 2020), and so on. There
had also been various works on co-reference resolution and bridging anaphora (Pandit &
Hou, 2021; L-T. Sorodoc et al., 2020) which, similar to this study, target the understanding
of reference. More precisely, for a probing task, a diagnostic classifier is trained on
representations from the model. Its performance embodies how well those representations
encode the information associated with the probing task. To understand what linguistic
features neural models encode when modelling REs, we introduce 8 probing tasks, each of
which is associated with a linguistic feature influencing the choice of RF and examine our
RFS models on these probing tasks in order to interpret and explain their behaviour.
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Triples: (AWH_Engineering_College, country, India)
(Kerala, leaderName, Kochi)
(AWH_Engineering_College, academicStaffSize, 250)
(AWH_Engineering_College, state, Kerala)
(AWH_Engineering_College, city, “Kuttikkattoor”)
(India, river, Ganges)

Text: AWH Engineering College is in Kuttikkattoor, India in the state of Kerala. The school
has 250 employees and Kerala is ruled by Kochi. The Ganges River is also found in India.

Delexicialised Text:

Pre-context: AWH_Engineering_College is in “Kuttikkattoor” , India in the state of Kerala .
Target Entity: AWH_Engineering_College

Pos-context: has 250 employees and Kerala is ruled by Kochi . The Ganges River is also found
in India .

Table 5.3: An example data from the webNLG corpus. In the delexicalised text, every entity
is underlined.

Type  Classes

4-Way  Demonstrative, Description, Proper Name, Pronoun
3-Way Description, Proper Name, Pronoun
2-Way Non-pronominal, Pronominal

Table 5.4: 3 different types of RF classification.

5.3.1 The RFS Task

Before formally defining the RFS task, we first recall the End2End REG task that has been
detailed in §2.2.2. Based on webN1LG, Castro Ferreira, Moussallem, Kadar, et al. (2018)
first introduced the task of End2End REG. Taking the delexicalised text from webNLG in
Table 5.3 as an example, given the entity “AWH_Engineering_College”, REG chooses a RE
based on that entity and its pre-context (“AWH_Engineering_College is in “Kuttikkattoor” ,
India in the state of Kerala . ”) and its pos-context (“has 250 employees and Kerala is ruled by
Kochi . The Ganges River is also found in India .”).

Akin to End2End REG, given the previous context x(pre) — {wy,wy, ..., w;_1} (Where w
is either a word or a delexicalised entity label), the target referent x() = {w;}, and the post
context x(P%) = {w;, w;,1,...,w, }, a RFS algorithm aims at finding the proper RF f from a
set of K candidate RFs F = {f;}X ;.

Regarding the possible RFs for the RFS task, we test 3 different classifications, depicted
in Table 5.4. Due to the small number of demonstrative noun phrases in the dataset, we
decide to also conduct a 3-way classification in which descriptions and demonstratives are
merged. Also, most emphasis in the linguistic literature is on the pronominalisation issue.
Therefore, we also include a 2-way classification task in the study.

As stated, the main goal of the study is to understand which linguistic features are
encoded by RFS neural models. Additionally, we are curious whether models trained solely
for pronominalisation capture different contextual features in comparison with the other
two classifications.
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ConaTT T
r________________L:::::::_ I o _______ |
i | Pre-context ] [ Entity ] [ Pos-context ] i

[ Input Encoder ]

[ BERT/GloVe ]

Figure 5.1: Figure of the ConATT model (above) and the c-RNN model (below).

5.3.2 Neural Referential Form Selection Models

We build NeuralRFS models by 1) adopting the best NeuralREG model from Castro Ferreira,
Moussallem, Kadar, et al. (2018) (see §2.2.2 for more details); and 2) proposing a new
alternative that is simpler, and can easier incorporate pre-trained representations.

ConATT

We adopt the CATT model from Castro Ferreira, Moussallem, Kadar, et al. (2018), which
achieves the best performance on REG among the models they tested in their study. The
above diagram in Figure 5.1 depicts our ConATT model. Given the inputs, we first use

Bidirectional GRU (BiGRU, Cho et al., 2014) to encode x("®) as well as x(Pos). Formally, for
each k € [pre, pos], we encode x*) to h¥) with a BIGRU:

h®) = BiGRU (x %)), (5.8)

Subsequently, different from Castro Ferreira, Moussallem, Kadar, et al. (2018), we encode
h%) into the context representation c¢(*) using self-attention (Z. Yang et al., 2016). Concretely,

given the total N steps in 1K), we first calculate the attention weight aj(k) at each step j by:
e = o Mranh (W V1Y), (5.9)
(k)
exp(e; )
Yn—1exp(en)
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where 7, is the attention vector and W, is the weight in the attention layer. The context
representation of x(¥) is then the weighted sum of h(%):

) _ 3 00
c :];aj AR (5.11)

After obtaining c(P"®) and ¢(P%), we concatenate them with the target entity embedding
x("), and pass it through a feed-forward network to obtain the final representation:

R = ReLU(Wj[cP7), x (1), c(pos)]), (5.12)

where Wy is the weight in the feed-forward layer. R is also used as the input of the probing
classifiers. R is then fed for making the final prediction:

P(f|x(Pre), x(1), x(Pos)y — Softmax(W,R), (5.13)

where W, is the weight in the output layer.

c-RNN

In addition to ConATT, we also try a simpler yet effective structure, which uses only a
single BIGRU. We name the framework it follows as the centred recurrent neural networks
(henceforth c-RNN), which is sketched in the bottom diagram of Figure 5.1. Specifically,
instead of using two separate BiGRUs to encode pre- and pos-contexts, we first concatenate
x(re), x(r), and x(P%%), and then encode them together:

h = BiGRU([x(P®), x (1), x(Ps)]), (5.14)

Suppose that the target entity is in position i of the concatenated sequence, we extract the
i-th representation from ; for obtaining R = ReLU(W(h;). After obtaining R, the rest of
the procedure is the same as ConATT.

Pre-training

As a secondary objective of this study, we want to see whether RFS can benefit from
pre-trained word embeddings and language models, whose effectiveness has not yet been
explored in REG. ° For both c-RNN and ConATT, we try the GloVe embeddings (Pennington
et al., 2014) to see how pre-trained word embeddings contribute to the choice of RF. ¢ For
c-RNN, we try to stake it on the BERT (Devlin et al., 2019) model. In order to let BERT better
encode the delexicalised entity labels, we first re-train BERT as a masked language model
on the training data of webNLG. We then freeze the parameters of BERT and use the model
to encode the input, which is then fed into c-RNN.

Machine Learning (ML) based Model.

We use XGBoost (T. Chen & Guestrin, 2016) from the family of Gradient Boosting Decision
Trees to train RFS classifiers. 5-fold-cross-validation was used to train the models. The

Previously, only Cao and Cheung (2019) used pre-trained embeddings, but no ablation study was done.
We also explored other ways of using BERT, such as using only BERT plus a feed-forward layer to obtain /, or not
freezing parameters of BERT while training. The resulting models had low performance in all cases.
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Feature Definition 2-way 3-way 4-way
Syn Description is provided in the main text. v v v
Entity Values: Person, Organisation, Location, Number, Other v/ v v
Gender Values: male/female/other v v v
DisStat Description is provided in the main text. v v v
SenStat Description is provided in the main text. - v v
DistAnt_S  Description is provided in the main text (DistAnt). v v v
DistAnt_W  Distance in number of words (5 quantiles) v - v
Sent_1 Does RE appear in the first sentence? v v v
MetaPro Description is provided in the main text. v v v
GloPro Description is provided in the main text. v v v
Table 5.5: Features used in the XGBoost models.
4-way 3-way 2-way
Model Precision  Recall F1 Precision  Recall F1 Precision  Recall F1
XGBoost 53.77 5198 51.55 71.27 69.24 68.34 86.64 82.76  84.57
c-RNN 68.79 62.95 64.96 84.49 8252  83.63 90.31 88.01  89.09

+GloVe 69.10 63.90 65.40 84.29 82.55 83.30 89.33 88.02  88.63
+BERT 62.63 61.80 62.15 83.02 81.44  82.15 90.98 88.00 89.42
ConATT 67.42 62.39  64.07 85.04 8221 83.53 89.30 89.19 89.23
+GloVe 65.98 6249  63.67 83.62 8141 8245 89.60 88.06 88.80

Table 5.6: Evaluation results of our RFS systems on WEBNLG. Best results are boldfaced,
whereas the second best results are underlined.

classifiers were first trained on a wide range of features obtained from the webNLG corpus
(16 features). After running a variable importance analysis, we selected a subset of features
for the final models. The detailed list of features is presented in Table 5.5.

5.3.3 Evaluating RFS Models

Implementation Details

We tuned hyper-parameters of each of our models on the development set and chose the
setting with the best macro F1 score. For the BERT model, we used the cased BERT-BASE
and added all entity labels into the vocabulary to avoid tokenisation. 7 When re-training
BERT on webNLG, we set the masking probability to 0.15 and trained it for 25 epochs.

For the XGBoost models, we set the learning rate to 0.05, the minimum split loss to 0.01,
the maximum depth of a tree to 5, and the sub-sample ratio of the training instances to 0.5.

We report the macro averaged precision, recall, and F1 on the test set. We ran each
model 5 times, and report the average performance. As for the dataset, we used v1.5 of
webNLG (Castro Ferreira et al., 2019) and used only seen entities.
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Figure 5.2: Confusion Matrices for 4-way classification results of XGBoost (left) and
c-RNN+GloVe (right), where PRO, PN, DES, and DEM are pronoun, proper name, de-
scription and demonstrative respectively.

Results

Table 5.6 shows the results of different classification tasks. Generally, all neural variants
outperform the machine learning baseline. The performance difference is small in the case
of binary classification, while it is much bigger for 3- and 4-way classifications. This is
because the 2-way classification (i.e., pronominalisation) is clearly less complex than the
other two alternatives, and, thus, the feature set used by the baseline results in almost
similar outcomes to neural models.

Comparing neural variants to each other, the results show that the simpler c-RNN
wins over ConATT in 4-way classification, and has on par performance with ConATT for 3-
and 2-way classifications. One possible explanation is that ConATT first breaks down the
input into three pieces (i.e., the target entity as well as pre- and pos-context), encodes
them separately, and merges the encoded representations back before being sent to make
predictions. This “divide and merge” procedure might hinder the model from learning
some useful information.

Regarding the effectiveness of incorporating pre-trained models, GloVe embeddings
have a positive impact on c-RNN only in case of 4-way predictions and have no contribution
to 2- and 3-way classifications. Moreover, it has a negative effect on ConATT: the performance
diminishes when GloVe is used. It is surprising to see that in the case of c-RNN, BERT has
a negative effect on 4- and 3-way predictions (the F1 score was reduced from 64.86 and
83.63 to 62.15 and 82.15 respectively). For pronominalisation, BERT slightly boosts the
performance (from 89.09 to 89.42), but this boost is not as much as BERT’s boosting effect
on other NLP tasks. This is probably because although BERT was re-trained on webNLG
delexicalised sentences, the entity labels still function as noise for BERT.

To obtain insights into the behaviours of the deep learning and classic ML-based models
for RES, we depict the confusion matrices of XGBoost and the best performing neural model
c-RNN+GloVe in Figure 5.2 for the 4-way classification. The confusion matrices suggest
that both models do a good job in selecting pronouns and proper names (that is why
the performance difference in the 2-way classification is small), and both perform poorly
in choosing demonstratives (probably due to the fact that demonstratives are extremely

7 The code for cased BERT-BASE can be found at: huggingface.co/bert-base-cased
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infrequent in webNLG). The main difference between the two models is in distinguishing
proper names from descriptions. The XGBoost model wrongly predicted the descriptions
as proper names in 62.58% of the cases, while the neural c-RNN+GloVe model did this
wrong prediction in 20.18% of the times. This difference in the performance of the two
models might be because the neural models learnt some useful features from the discourse
which are not covered in our feature engineering procedure. Furthermore, after looking
into the webNLG dataset, we noticed that various RE cases are annotated incorrectly. For
example, webNLG annotates “United States” as a proper name, and “the United States” as
a description. The incorrect annotations might increase the confusion between choosing
description and proper name and, as a consequence, reduce the overall performance.

5.3.4 Probing RFS Models

We use a logistic regression classifier as our probing classifier. Concretely, for each input,
we first use a model discussed in §5.3.2 to obtain its representation R. As mentioned in
§5.3.2, we ran each model five times and reported their averaged scores. For the probing
tasks, we used the representations of the models with the best RFS performance on the
development set.

Probing Tasks

Following the discussion about factors that influence the choice of referential forms in
§2.2.2, we formulate the following probing tasks.

Referential Status. The referential status of the target entity influences the choice of RF in
both linguistic (Chafe, 1976; Gundel et al., 1993) and computational studies (Castro Ferreira
et al., 2016). In this study, we define referential status on two levels: discourse-level and
sentence-level. The former (DisStat) has two possible values: (a) discourse-old (i.e., the
entity has appeared in the previous discourse); and (b) discourse-new (i.e., the entity has
not appeared in the previous discourse). Sentence-level referential status (SenStat) also
consists of three values: (a) sentence-old (i.e., the RE is not the first mention in the current
sentence); (b) sentence-new (i.e., the RE is the first mention of the entity in the sentence);
and (c) discourse-new (i.e., the RE is the first mention of the entity in the discourse).

Syntactic Position. Entities in subject position are more likely to be pronominalised than
in object position (Arnold, 2010; Brennan, 1995). Therefore, in the syntax probing task
(henceforth Syn), we do binary classification: subject or object.

Recency. Recency has been used as a vital feature in many of the previous REG or RFS
systems (Greenbacker & McCoy, 2009; Kibrik et al., 2016). It measures the distance between
the target entity and its closest antecedent. There are various ways of estimating the recency
of a target entity given its context. We hereby use two measures:

1. The number of sentences between the target entity and its antecedent (DistAnt),
which consists of four possible values: the entity and its antecedent are (a) in the
same sentence; (b) one sentence away, (c) more than one sentence away; and (d) the
entity is a first mention (to distinguish first mentions from subsequent mentions);
and
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2. Whether there is an intervening referent between the target and its nearest antecedent
(IntRef) (Greenbacker & McCoy, 2009). In other words, it checks whether the target
and the preceding RE are coreferential. This feature has three possible values: (a) the
target entity is the first mention; (b) the previous RE refers to the same entity; and
(c) the previous RE refers to a different entity. Note that the existence of intervening
markable might signal the existence of a competition (if the intervening referent has
the same animacy and gender values as the target RE).

Discourse Structure Prominence. As mentioned in §2.2.2, the “organisational” properties
of discourse may influence the prominence status of the entities. We introduce three probing
tasks capturing different properties of the discourse.

1. Local prominence (LocPro): The idea of local prominence is coming from Centering
Theory (Grosz et al., 1995). It is a hybrid feature of DisStat and Syn. Concretely, we
use the implementation of Henschel et al. (2000): an entity is locally prominent if it
is “discourse-old" and “realised as subject”. It is a binary feature with two possible
values: (a) locally prominent; and (b) not locally prominent;

2. Global prominence (GloPro): This feature is based on the notion of global salience in
Siddharthan et al. (2011), asking whether the entity is a minor or major referent in the
text. According to them, “the frequency features are likely to give a good indication
of the global salience of a referent in the document” (p. 820). We define a binary
feature in which the most frequent entity in a text is marked as globally prominent.

3. Meta-prominence (MetaPro): In line with global prominence, we also want to explore
to what extent prominence beyond a single text (e.g. on a text collection level) may
impact the way people refer. In the context of the current circumstances, the sentence
“I received my vaccine today" is unambiguous, and the RE my vaccine needs no extra
modification (e.g. my covip-19 vaccine); however, a couple of years from now, a
richer RE may be needed to refer to the vaccine. The idea behind this exploratory
feature is that people might use less semantic content to refer to the referents which
are well known outside of the text. Based on the number of mentions of a target entity
in the whole webNLG, four possible values, each of which representing an interval,
are assigned to each RE: (a) [0,50); (b) [50,150); (c) [150,290); and (d) [290, o). For
example, the category [0,50) contains those entities that occur fewer than 50 times in
the corpus.

Importance Analysis

We conducted a feature importance analysis to find out which features that are used in the
probing tasks had the highest contributions to the feature-based ML models. This analysis
functions as a sanity check to find out whether the representations have learnt the features
contributing the most to the RFS task.

To assess the importance of the features used in the probing tasks, we trained XGBoost
models, only using the features above, and calculated the model-agnostic permutation-
based variable importance of each model (Biecek & Burzykowski, 2021). Concretely, we
measured the extent to which the performance changes if we removed one of the features.
Figure 5.3 depicts the performance change for each feature. According to the figure, DisStat
and Syn contribute the most. LocPro is the least important feature because it is a hybrid
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Figure 5.3: Feature importance of XGBoost classifiers for 4-way predictions. Higher loss
shows greater importance of a feature.

combination of DisStat and Syn. Removing it while keeping DisStat and Syn will not hurt
the performance of the model a lot. Considering that DisStat and Syn are both highly vital
features, LocPro is much more important than what the experiment suggests. In addition
to DisStat and Syn probing tasks, we also expect high performance for the LocPro task.

Probing Results

We mentioned earlier in this study that we conducted probing tasks to find out whether
the RFS models’ latent representations encode the linguistic features. High performance in
probing tasks would indicate that the features are encoded in the latent representations of
the models.

We evaluate probing tasks using the accuracy and macro-averaged F1 scores. Each
probing classifier was trained 5 times. Here, we report the averaged value. Additionally,
we used 2 baselines:

1. random: it randomly assigns a label to each input; and

2. majority: it assigns the most frequent label in the given probing task to the inputs.

Results of Each Probing Task. Compared to the random baseline, all neural models have
achieved higher performance on all tasks.

1. Referential status and syntactic position: all models exhibit consistently high perfor-
mance on DisStat, SenStat, and Syn. This shows that, at least for the webNLG corpus,
all neural models can learn information of referential status and syntactic position;

2. Recency (i.e., DistAnt and IntRef): all models perform worse compared to the
referential status and syntax probes. Although they do not have bad accuracy scores,
their F1 scores are lower than that of DisStat, SenStat, and Syn, and are closer to
the baselines. This finding is consistent with the results of the importance analysis,
where DistAnt and IntRef were found to be less important (compared to DisStat and
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Model Type DisStat  SenStat Syn DistAnt IntRef LocPro GloPro MetaPro
Randen ) 49.57 33.11 49.65 25.19 33.30 50.05 49.75 25.24
(41.83) (22.87)  (48.99) (14.90) (22.92) (49.84)  (48.02) (25.20)
Ma-orit ) 86.91 86.91 61.27 86.91 86.91 56.28 68.49 28.12
J y (46.50) (31.00)  (37.99) (23.25) (31.00) (36.01)  (40.65) (10.97)
4oway 85.16 93.28 94.16 92.84 91.71 83.37 70.62 44.76
c-RNN (84.06) (73.72)  (85.34) (53.84) (55.43)  (82.92)  (56.00) (42.32)
3-wa 84.78 92.59 93.50 92.58 91.24 82.17 70.87 4542
y (83.72) (72.60)  (83.60) (54.78) (53.21)  (81.67)  (56.70) (41.79)
2-way 88.84 92.77 93.49 92.53 91.01 86.08 71.24 44.32
(88.04) (73.84)  (84.00) (54.93) (52.31)  (85.69)  (59.98) (41.65)
4-way 85.84 93.58 94.56 93.30 92.06 83.71 70.55 44.23
c-RNN (84.85) (74.59)  (87.04) (55.67) (55.93)  (83.20)  (53.53) (41.71)
+GloVe 3-way 85.09 91.89 93.23 91.72 90.92 82.08 70.20 45.58
(83.89) (67.24)  (82.48) (50.94) (51.17)  (81.44)  (52.49) (42.34)
2-wa 88.88 92.38 93.32 92.25 90.94 85.81 71.78 44.92
y (88.02) (71.25)  (82.67) (53.67) (51.43) (85.22)  (63.17) (41.03)
dowa 95.85 94.41 84.05 93.60 92.27 82.03 71.04 45.27
c-RNN y (90.64) (78.04)  (82.71) (56.91) (54.30) (81.67)  (54.24) (43.07)
+BERT 3-wa 94.00 92.74 85.12 92.57 91.28 82.92 71.69 43.64
y (84.80) (72.29)  (84.08) (54.21) (53.25)  (82.53)  (57.31) (42.80)
2-wa 94.59 92.94 85.75 92.50 92.06 83.27 73.80 41.05
y (87.28) (69.69)  (84.74) (54.19) (54.88) (82.77)  (63.07) (40.75)
dowa 94.86 94.12 88.64 93.69 92.11 86.93 72.22 48.37
CopATT y (87.81) (77.11)  (88.00) (57.09) (55.88) (86.34)  (60.15) (46.14)
3-wa 93.91 93.15 87.43 92.93 91.35 85.32 72.61 49.35
y (84.39) (74.19)  (86.66) (55.26) (54.09)  (84.56)  (60.61) (47.47)
2owa 93.74 92.78 89.01 92.50 91.19 87.05 70.65 44.24
y (84.20) (73.18)  (88.44) (53.98) (53.64) (86.75)  (56.39) (41.81)
dowa 94.86 94.10 87.98 93.66 92.10 86.06 71.94 53.19
ConATT y (87.82) (77.70)  (87.24) (57.52) (55.22)  (85.69)  (58.54) (49.94)
+GloVe 3-way 93.79 92.78 89.54 92.59 91.39 87.09 71.91 49.27
(84.35) (72.83)  (88.91) (54.23) (51.96) (86.80)  (59.05) (46.36)
2owa 93.81 92.86 87.69 92.84 91.50 85.61 72.48 44.47
y (84.38) (73.21)  (86.96) (56.14) (53.33) (85.27)  (62.46) (39.63)

Table 5.7: Results of each probing task. Results are reported in the format of A(B), where A

is the accuracy and B is the macro F1.

Syn). One possible explanation is that, in the webNLG corpus, 67% of the documents
contain only one sentence, making recency-related features play a smaller role. As
another possible explanation, in line with the previous probing works on co-reference
and bridging anaphora (Pandit & Hou, 2021; L.-T. Sorodoc et al., 2020), models have
more difficulty capturing long-distance properties;

3. Discourse structure prominence: since LocPro is a hybrid of DisStat and Syn, all
models handled it to a large degree. Meanwhile, neural models appear to handle
GloPro and MetaPro worse than other features since the performance of their corre-
sponding probing tasks is closer to the baselines. ® These results are in contrast with

8 Note that, for MetaPro, the Majority has a low F1 score because the distribution of the values of MatePro is

balanced.
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the importance analysis results, which suggested that both GloPro and MetaPro are
important features (ranking 3 and 4 in Figure 5.3). Learning GloPro and MetaPro
requires a model to have an overall understanding of the whole input document or
the whole corpus, which the neural models might not be able to acquire.

Comparing c-RNN and ConATT. When evaluating our RFS models, we concluded that the
c-RNN model works better than ConATT on 4-way RF classification. Nevertheless, when
probing, we observed that ConATT does a better job in many tasks, including DisStat,
LocPro, GloPro, and MetaPro. To understand why, we look into the webNLG dataset and
found that REs in webNLG are not representative of the realistic use of REs. Specifically,
it has three shortcomings: 1) it consists of rather formal texts that may not reflect the
everyday use of REs, and in which very simple syntactic structures dominate; 2) the texts
are extremely short, with an average length of only 1.4 sentences. Consequently, 86.91%
of the REs in webNLG are first mentions; 3) 21% of the documents talk about the entity
“United_States”. Therefore, although ConATT learns more contextual features, it still has a
lower performance. ConATT’s better learning of referential status (i.e., DisStat) is probably
a benefit of using self-attention, which helps the model capture longer dependencies than
RNNS.

The Effect of Pre-training. As mentioned earlier, the secondary objective of this study
is to find out whether RFS can benefit from pre-trained word embeddings and language
models. The effect of incorporating the GloVe embeddings is not significant to c-RNN and
ConATT. The major contribution of BERT is helping with learning DisStat (which is, again,
probably a result of using self-attention). Akin to the above discussion, since the majority
of the entities in webNLG are first mentions, the increased accuracy boost in the DisStat
task is not enough to boost the overall performance of RFS.

Comparing Different RF Classifications. It also appears that models learn different
information using different label sets (classes). For example, 2-way classification (i.e.,
pronominalisation) helps c-RNN learn more about referential status. But in case of models
with attention mechanism (i.e., ConATT, ConATT+GloVe and c-RNN+BERT models), referential
status is learnt better in 4-way classification models. Also, in case of ConATT (+GloVe), we
observed that more fine-grained classifications help the model learn more about meta
prominence (i.e., MetaPro).

5.3.5 Discussion

Our aim is to understand whether neural models capture the features associated with the
task of RFS. To this end, we defined 8 probing tasks in which we focused on referential
status, syntactic position, recency, and discourse structure. The probing results suggest that
the probe classifiers always performed better than the random and the majority baselines.
The performance was consistently good in the tasks associated with referential status,
syntax and local prominence.

It is worth noting that probing has its own shortcomings. For instance, on the one hand,
low probing performance does not always mean the feature is not encoded, but could also
mean that such a feature does not matter to RFS. To mitigate this issue, we conducted a
complementary ML-based variable importance analysis; in this analysis, discourse status
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and syntactic position came out as the factors with the highest contributions. These features
were also predicted very well in the probing tasks. However, these results should still be
taken with a pinch of salt: the variable importance has been conducted on the ML model
and not on the neural models. We cannot be certain that the same features contribute
to all the models similarly: a feature might be quite important in the machine learning
model, but not as important in the neural models. On the other hand, some researches
have questioned the validity of probing methods. They found out that it is difficult to
distinguish between “learning the probing task” and “extracting the encoded linguistic
information” (Hewitt & Liang, 2019; Kunz & Kuhlmann, 2020) for a probing classifier. This
suggests that higher performance of a probing classifier does not necessarily mean more
linguistic information has been encoded. This prevents us from directly quantifying how
well the linguistic information has been learnt using the performance of probing classifiers
and requires us to make conclusions more carefully.
From our probing efforts, we concluded that:

1. All neural models have learnt some information about the features associated with
the probing tasks, but how well they have learnt this information is yet to be assessed;

2. The webNLG corpus, which has often been used for the study of discourse REG, is
not ideally suitable for studying discourse-related aspects of RFS, because the texts
are too short and the majority of REs are first mentions. This leads to bias in the
evaluation of RFS and REG algorithms;

3. When it comes to the question of how well an RFS feature can be learnt, it matters
what neural architecture and label set are used, and whether the model is pre-trained
or not. Using an attention mechanism and more fine-grained label sets help a model
learn more information;

4. All models perform poorly in terms of learning those features, such as GloPro and
MetaPro, that do not derive from the text itself but from the wider context in which
it is written and read.

5.4 Study 3: Neural Referential Selection in Mandarin

In the previous study, we built a number of NeuralRFS models and examined them on the
webNLG dataset, an English REG dataset. This study turns to the RFS task in Mandarin.
As aforesaid, one challenge of RFS in Mandarin is that the RFS, as a classification task,
has an extra option: zero pronouns. However, there is no suitable dataset available. We,
therefore, need to construct an RFS dataset in Mandarin (§5.4.1). As concluded from Study
2, the webNLG is not ideal for studying human referential behaviour because its texts
are too formal and short and its REs are predominantly “first mention" noun phrases.
Therefore, we are aiming for a dataset whose texts are natural and long, and whose REs
are less often first mentions than in webNLG. To this end, we build our dataset on the
basis of the OntoNotes dataset (which was used in the first study), whose contents come
from six sources, namely Broadcast News, Newswires, Broadcast Conversations, Telephone
Conversations, Web Blogs and Magazines.

Subsequently, in §5.4.1, we extend the models proposed in §5.3.2 to handle Mandarin
texts. In most Mandarin NLP tasks, the input text can be encoded either in a word-based
way or in a character-based way, and most pre-trained models (e.g., BERT) have only a
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Pre-context: X\ BT /& AU A ARSI HR 1 JHE - HH BT Mk sl 8
B EEER . 5 RIS B BRI . HiE ORE o IR R BR W ER K B ARE
R, MERTREMM LY, WERBRZ UK, B WHhX®EAE, FF L
TR MR AR S5 EE 0 E— TR o AWE T JLF W RE RS VTR T /1 Fra R
WK BT 5 RE_ BT FwRES, B

Target Entity: 551

Pos-context: 5 = ARl « FF4f Hibmy , Bez 40 FAH - &E Wi - EEE - &
WO ESEWEAREE, FE B R ESIK . G N R B 3 B B RiE sSE
TR 85 B R BT O . AT A B Ve TR a2 K B mH .

Table 5.8: An example data sample from the OntoNotes corpus.

Type  Classes

4-Way Description, Proper Name, Pronoun, Zero Pronoun
3-Way Proper Name, Pronoun, Zero Pronoun
2-Way  Opvert Referring Expression, Zero Pronoun

Table 5.9: 3 different types of Mandarin RF classification.

character-based version available. Thus, in this study, we try both strategies: word-based
modelling and character-based modelling.

Lastly, we evaluate and probe the models following the same paradigm as Study 2 (see
§5.3.2 and §5.3.4).

5.4.1 Dataset Construction

Akin to the first study, we construct the dataset based on the OntoNotes dataset and
process the data to the same format as that of the webNLG dataset. We follow the following
construction process.

First, for each RE in OntoNotes, we used 3 previous sentences as the pre-context and 3
proceeding sentences as the pos-context. With the help of the syntax tree of the sentence
that the target referent is in and the surface form of the target referent, we automatically
annotated each RE with its category. For example, if the surface form is “*pro*”, then the
category is ZP. If the RE is an NP in the syntax tree, then it was annotated as a description.
In this study, we consider three different classifications. The binary classification asks
classifiers to conduct pro-drop (i.e., whether the target referent should be realised as a
ZP or an overt RE). The 3-way classification is to do pronominalisation and pro-drop
simultaneously. Table 5.9 lists the details of all three classifications.

Second, we extracted all REs for every referent. Different from study 1, this time, we
only focus on the referents that are referred by at least one proper name or one description.
If all REs that refer to a given referent are ZPs or pronouns, then we disregarded this
referent from our corpus. In other words, we do not investigate deictic ZPs and deictic
pronouns in this study.

Third, to obtain the entity label for each referent, following Castro Ferreira, Moussallem,
Kaédar, et al. (2018), we used its proper name and replaced the blanks with “_". If a referent
has no proper name, we used its shortest description instead. Subsequently, both the
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pre-contexts and pos-contexts were delexicalised using entity labels. Table 5.8 shows a
sample from the constructed dataset.

Fourth, we split the whole dataset into training set and test set in accordance with the
CoNLL 2012 Shared Task (Pradhan et al., 2012). We then sampled 10% of documents from
the training set as the development data.

As a result, we obtained a dataset in which the training set contains 73607 samples, the
development set contains 10008 samples, and the test set contains 12096 samples. From
now on, we refer to this newly constructed dataset as OntoNotes.

5.4.2 Mandarin RFS Models

We planned to test exactly the same set of neural models in §5.3.2 on the OntoNotes
dataset. Nevertheless, the way in which BERT encodes Mandarin texts is different from
how it encodes English texts. For English, before encoding an input, BERT calls a word
segmentation algorithm (e.g., BPE (Sennrich et al., 2016) and WordPiece (Y. Wu et al., 2016))
to break each token in the input into subwords (which is often morphemes). For Mandarin,
since morphemes in Mandarin are always characters (see §A for more details), Mandarin
BERT is fully character-based. To conduct a fair comparison, we grouped the models into
two categories: word-based models and character-based models.

Word-based Models

For Mandarin, both ConATT and c-RNN can be used in the same way as in §5.3.2. Regarding
the use of pre-trained word embeddings, since there is no commonly used pre-trained
Mandarin GloVe embedding available, we use the one trained by Word2Vec (Mikolov et al,,
2013) instead. ° More specifically, it is trained through the Skip-Gram with Negative
Sampling (SGNS) technique on the Chinese Wikipedia corpus using all word, character,
and N-gram features (S. Li et al., 2018).

Character-based Models

We adapt all neural models in §5.3.2 to be character-based. To this end, we need to
re-process the OntoNotes corpus. We broke all inputs into characters, including the
pre-contexts, the pos-contexts, and the entity labels. Therefore, for a target referent
r, the input of RFS models defined in §5.3.1 is re-formalised as: the previous context
x(pre) = {c1,¢2,...,ci_1} (where c is a character), the target referent x() = {¢i, Cis1, s c]-},

and the post context x(Pos) = {¢j+1,¢j42, - cn}. Since entity labels were also broken into
characters, the underlines “_" in them are no longer meaningful. Following Cunha et al.
(2020), we removed all “_" in entity labels. Additionally, due to the limitation of the
computing resources, for the BERT model, we use “bert-base-chinese”, which only accepts
inputs shorter than 512 characters. '° Thus, we removed all inputs whose total lengths
(including all the pre-contexts, the pos-contexts, and the target referents) are longer than
512 characters. We call the resulting corpus OntoNotes-c. Its training set has 70428 samples,
its development set has 9217 samples, and its test set has 11607 samples.

In what follows, we describe how we adapt the ConATT and the c-RNN to become
character-based.

9 The pre-trained embeddings are available at: https://github.com/Embedding/Chinese-Word- Vectors.
10 The pre-trained bert-base-chinese model is available at: https:/ /huggingface.co/bert-base-chinese.
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4-way 3-way 2-way
Model Precision  Recall F1 Precision  Recall F1 Precision  Recall F1
c-RNN 53.55 51.51 52.18 56.11 53.33 54.42 64.91 63.64 64.22
+SGNS 59.14 57.65 57.63 59.15 55.46  56.78 66.76 68.57  67.58
ConATT 53.69 5293  53.05 55.25 54.04 54.55 64.60 65.85  65.01
+SGNS 57.75 55.98 56.42 59.34 55.40 56.87 67.04 68.30 67.59
c-RNN-char 54.60 5465 54.19 56.78 5350  54.68 67.66 62.89  64.59
+SGNS 57.78 56.75 57.16 59.57 56.19 57.46 67.74 65.33 66.37
+BERT 68.22 69.48 68.17 70.36 68.60 69.13 78.35 73.51 75.59
ConATT-char 54.27 53.08  52.98 53.67 4947  50.79 63.25 56.92  58.28
+SGNS 55.88 54.94 54.18 55.01 53.06 53.87 64.98 61.38 62.69

Table 5.10: Evaluation results of our word based RFS systems on the OntoNotes dataset as
well as our character based RFS systems on the OntoNotes-c. Best results are boldfaced,
whereas the second best results are underlined.

ConATT-char. In Study 2, we used self-attention (see Equation 5.8-5.11) to encode the
pre-context and pos-context. Here, in ConATT-char, we also encode the entity label using

the same method, and obtain its representation c(*). Subsequently, the final representation
R is computed by:

R = ReLU(Wy[cP), 1), c(Pos)]), (5.15)

The rest of the procedure is the same as the one that was used by ConATT.

c-RNN-char. As in Equation 5.14, the c-RNN-char model first concatenates x(pre)  x(r)
and x(P%), and encodes the concatenated input using a single BiGRU to obtain the repre-
sentation of the whole input h. Subsequently, we extract the i-th representation (i.e., the
position of the first character in x(")) and the j-th representation (i.e., the position of the
last character in x(")) from h and add them together for obtaining:

R = ReLU (Wi (i + 1)) (5.16)

After obtaining R, the rest of the procedure is the same as the c-RNN.

5.4.3 Evaluating Mandarin RFS Models
Implementation Details

We tuned hyper-parameters of each of our models on the development set and chose the
setting with the best macro F1 score. For the BERT model, we used the cased BERT-BASE-
CHINESE. We report the macro averaged precision, recall, and F1 on the test set. We ran
each model 5 times, and report the average performance.

Results

Table 5.10 lists the results of our models on the OntoNotes and OntoNotes-c, respectively.
On the OntoNotes dataset, probably because of the use of the self-attention, ConATT
performs better than c-RNN. Specifically, ConATT significantly improves the recall score in
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& m21.55 8.03  29.27 22.25 759 1542 a0
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z 276 1070 JE0N 2693 260 -
-20

568 7.22

DES

Figure 5.4: Confusion Matrices for 4-way classification results of c-RNN-char+SGNS (left)
and c-RNN-char+BERT (right), where ZP, PRO, PN, and DES are zero pronouns, pronoun,
proper name, and description respectively.

all three classifications compared to c-RNN. The use of the pre-trained word embeddings
SGNS appears to make a considerable contribution. It helps to improve the performance of
both c-RNN and ConATT.

On the OntoNotes-c, the results are very different: c-RNN outperforms ConATT, espe-
cially when doing 3-way and 2-way classification. One possible explanation is that, in
character-based modelling, the inputs are too long to be handled by the self-attention
module of ConATT. It is also worth noting that the self-attention mechanism of ConATT
is different from that of BERT. To be precise, ConATT uses a random initialised vector
as the attention query (Z. Yang et al., 2016) while BERT uses the input as the attention
query (Vaswani et al., 2017).

Additionally, BERT dramatically improves the performance of each of the three clas-
sifications. For example, in 4-way classification, using BERT improves F1 by 13.98 points
compared to c-RNN-char and by 11.42 points compared to c-RNN-char+SGNS. To see in
which way BERT can improve the performance, we print the confusion matrix for the
4-way classification using c-RNN-char+SGNS and c-RNN-char+BERT in Figure 5.4. As we
can see from the confusion matrix, c-RNN-char+SGNS is finding it hard to distinguish ZPs,
pronouns and proper names from descriptions. More than 25% of them are misclassified
as descriptions. BERT can solve the problem to a large extent. For instance, only 5.73% of
the proper name are misclassified as descriptions after using BERT.

Focusing on the use of ZPs, we print the confusion matrix for the 2-way classification in
Figure 5.5. Akin to the 4-way classification, c-RNN-char+SGNS also does not work well on
distinguishing ZPs from overt REs and BERT reduce the misclassification rate from 61.95%
to 44.56%. Moreover, we also observed that only 4.92% of the overt REs are misclassified
as ZPs. This suggests that BERT, by learning from contexts and pre-trained on large scale
datasets, can work considerably well on using ZP in a natural way.
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Figure 5.5: Confusion Matrices for 2-way classification results of c-RNN-char+SGNS (left)
and c-RNN-char+BERT (right), where ZP and ORE are zero pronoun and overt RE, respec-
tively.

5.4.4 Probing Mandarin RFS Models

In this study, we use the same probing classifier as in Study 2: a logistic regression to
analyse the latent representations learnt by models in §5.4.2. We use the representations
of the models with the best RFS performance on the developments as the inputs to the
probing classifier.

Probing Tasks

We use all probing tasks defined in §5.3.4 excepting the MetaPro task. The MetaPro asks
the classifier to identify referents that appear way more frequently than other referents.
However, compared to webNLG, OntoNotes is more natural and was collected from a
wider range of resources. There is no referent appears more than 50 times in the corpus.
We therefore decide not to include it in this study.

Probing Results

We use the same two baselines as in Study 2: random and majority. We evaluate each
probing task using the accuracy and macro-averaged F1 scores. Each probing classifier was
trained 5 times and we hereby report the averaged value.

Table 5.11 and Table 5.12 report the probing results of our word-based models and
character-based models, respectively.

Results of Each Probing Task. Focusing on the results of each probing task, we made the
following observations. First, by comparing the performance between baselines and neural
models, we found that all models can learn a certain amount of information about nearly
all features, except the GloPro. Every model (including the baselines) obtains a similar
performance on the GloPro task. There are two possible explanations. One is that the neural
models are not good at counting how many times a referent appears in a discourse, and,
thus, they failed to figure out the dominant referent. The other is because we constructed
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Model Type  DisStat SenStat Syn  DistAnt IntRef LocPro GloPro
50.20 33.18  50.11 25.02 3356  50.12 50.00

Random - (49.93) (32.70) (49.79) (23.81) (33.01) (46.44) (44.27)
Vajority - 5730 4270  57.79 4270 4270 7627  81.13
(36.43) (19.95) (36.62) (14.96) (19.95) (43.27) (45.09)

fway 64.81 4724 7523 4563 4734  79.02  82.02

- (62.05) (41.68) (73.79) (26.16) (43.46) (64.50) (46.68)
Sway O4A2 774 7579 4595 4675 7883 8200

(61.18) (43.44) (74.64) (27.32) (42.40) (65.34) (45.20)

2 way 6223 4615 7729 4562 4535 7793  82.13

(58.11) (39.44) (76.25) (25.81) (39.07) (61.09) (45.26)

sway 6660  51.03 7943 4824  50.83 8030  82.14

C-RNN (63.90) (47.74) (78.34) (29.86) (47.91) (66.50) (48.23)

+SGNS 66.09 49.03 79.69 47.14 49.74 80.11 82.13

WAy (6320) (45.44) (7889) (27.48) (4671) (67.78) (45.23)

dway 0321 4691 7864 4547 4541 7853 8212
(60.35) (41.54) (77.54) (25.85) (39.42) (62.08) (45.14)

fway 0537 4784 7526 4599 4765 7885 8219
ConATT (62.50) (44.97) (7343) (27.95) (43.54) (62.81) (46.70)
3way 0425 4709 7601 4581 4682 7860 8212
(61.63) (42.35) (74.87) (26.40) (42.42) (62.62) (45.13)

dway 265 4451 7505 4425 4519 7844 8212

(56.79)  (38.98) (73.37) (23.46) (38.38) (62.24) (45.12)

fway 0685 4912 7911 4712 4962 8019 8218

ConATT (6343) (45.94) (77.93) (28.19) (46.33) (66.93) (45.75)
+SGNS way 363 4730 7718 4571 4828 7889 221
(62.69) (43.01) (75.86) (26.16) (46.09) (64.06) (45.77)

dway 0332 4673 7749 4622 4705 7890 8220

(57.15)  (41.14) (76.26) (25.71) (44.13) (60.89) (45.97)

Table 5.11: Results of our baselines as well as word based models on each probing task on
the OntoNotes dataset.

each input using only 3 sentences preceding the target referent and 3 sentences following
the target referent. This sometimes makes the dominant referent appear only once in
the given discourse. In other words, there is no or a very small difference between the
frequency of the prominent referent and other referents, which hinders the classifier from
distinguishing them.

Second, all models work remarkably well on the task of DisStat, Syn, and LocPro.
This suggests that all models have learnt information about the referential status and the
grammatical role of the target referents. Since LocPro is a hybrid of DisStat and Syn, it is
no surprise that our models can handle it well.

The performance of SenStat and IntRef is slightly lower than that of the above three
tasks. Such a decrease in performance is understandable because learning these two specific
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Model Type DisStat  SenStat Syn DistAnt IntRef LocPro GloPro

pway 6460 4876 7630 4575 4784 7911 8197
Y (61.80) (43.39) (7474) (27.73) (44.65) (63.44)  (46.64)

c-RNN-char 3 6355 4752 7713 4569 4660 7811  82.02
WY (61.19)  (4152) (76.11)  (2643) (41.13) (61.70)  (45.76)

2 way 6132 4609 7795 4523 4571 7786 8211

(58.06) (36.30) (76.96) (24.11) (36.49) (58.82)  (45.54)

Lway 6607 5093 7841 4764 5057 8011 = 82.24

C-RNN-char (62.90) (46.96) (77.18) (30.78) (47.81) (66.16)  (48.20)

+SGNS 64.70 48.24 79.02 46.27 47.48 79.35 82.01

WA (6287) (4254) (77.81) (751) (4359) (6417) (46.11)
by 0248 4630 7850 4538 4482 7772 8193
Y (6045) (3824) (77.12) (2427) (3761) (64.09) (46.12)
by 732 5969 7886 5666 6027 8195 8196
C-RNN-char Y (7396) (57.66) (7815) (37.12) (5690) (69.68) (46.60)
+BERT sy 7446 5841 8048 5591 5939 8271 8191
Y (7377)  (5629) (7967) (35.77) (5596) (7324) (45.59)
pay 6920 5516 8068 5174 5173 8143 8205
Y (6810) (5208) (79.84) (2971) (5236) (71.30) (45.07)
ey P07 840 7038 4595 4816 7789  8@:
(6191) (4315) (67.48) (2641) (4415 (5731) (4727)
Condfi-eher 6293 4514 7038 4385 4528 7734 8206
Y (5954) (39.55) (6878) (2447) (3913) (55.27) (45.73)
by 6055 4421 6833 4375 4436 7637 8207
Y (5210) (32.85) (6567) (21.78) (32.66) (49.38) (45.35)
6609 4943 7587 4604 4920 7950 8222
4-way

ConATT-char (61.97) (44.63) (74.65) (28.19) (46.61) (64.49) (47.27)
+SGNS 3-way 6284 4651 7515 4499 4576 7812  82.06
(58.79)  (38.78) (74.09) (24.66) (3851) (60.19) (45.73)
62.65 4676 7417 4431 4484 7753 82.07

WAy 6009)  (3953) (72.90) (2213) (3488) (61.43)  (45.35)

Table 5.12: Results of our character based models on each probing task on the OntoNotes-c.

features requires a model to not only check whether the target referent has appeared in
the pre-context, but also roughly locate them. They are clearly more challenging tasks
compared to DisStat and Syn.

Besides GloPro, all models receive the worst performance on the DistAnt task. Com-
pared to SenStat and IntRef, this task asks each model to locate the previous mention of
the target referent in a more fine-grained way: checking whether the previous mention
appears in the current sentence or the previous sentence. In other words, models” lower
performance on DistAnt is, in part, because the task is harder than other tasks.

Comparing Word-based Models and Character-based Models. When comparing the
probing results of word-based and character-based models, for most cases, we found no
significant difference. The only exception is that ConATT-char and ConATT-char+SGNS learn
significant less information about the syntactic positions of the target referents than ConATT
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and ConATT+SGNS. This partly explains why they perform worse in RFS classification.

Comparing ConATT and c-RNN. We found no significant difference between the informa-
tion learnt by c-RNN and ConATT. This is not in line with the fact that, in RFS classification,
ConATT slightly outperforms c-RNN. Further study is needed to explain why.

Among character-based models, c-RNN-char learns significantly more information
about the syntactic position as well as slight more information about the referential status
(i.e., SenStat) and the recency (i.e., IntRef) than ConATT-char, which is consistent with the
winning of c-RNN-char in RFS classification.

The Effect of Pre-training. In line with the performance of RFS classification, SGNS
helps every model (i.e., c-RNN, ConATT, ConATT-char, and ConATT-char+SGNS) to learn
significantly more information about nearly every feature except GloPro. Moreover, using
BERT can further improve the abilities of these models to acquire information about features
except GloPro. We also observed that the benefit of using BERT is slightly less on learning
syntactic position information than learning other features. This is probably because
deciding the syntactic position of a RE relies more on tokens around it, but less on
dependencies between it and other REs in the discourse, which is what BERT is good at.

Comparing Different RF Classifications. We found no significant difference between the
amount of information of each feature learnt by models trained on 4-way classification
and those trained on 3-way classification. However, if we train a model on merely 2-
way classification (i.e., whether the target referent is realised as an over RE or a ZP), the
model will learn less information about every feature except GloPro. This suggests that
fine-grained classifications provide more supervision signals to make a model learn more
linguistic information than coarse-grained classifications since, at least in the RFS task,
fine-grained classifications are closer to human behaviours.

5.4.5 Discussion

WebNLG vs. OntoNotes

The webNLG and OntoNotes datasets are about different languages and were constructed
using different methodologies. Additionally, all referents in the webNLG test set appear in
its training set while only a few referents in the OntoNotes test set appear in its training
set. Therefore, it is hard to use the results on the two datasets to conduct controlled
comparisons between languages or between different dataset construction methodologies.
Nonetheless, intuitively, compared to webNLG, the texts in OntoNotes appear to be more
natural and the REs in OntoNotes are closer to the human behaviours. Regarding this
intuition, we have the following observations.

First, as discussed, the difficulty of each probing task follows the following order:
GloPro > DistAnt - {SenStat, IntRef} > {DisStat, Syn, LocPro}, where A >~ B means A is
harder than B. Theoretically, if a probing task is hard, then it is hard for an RFS model
to learn the corresponding task and, thus, the probing classifier has a lower performance.
This happens when the OntoNotes dataset is used. For example, since DistAnt is harder
than SenStat and IntRef, every model performs better on either SenStat or IntRef than on
DistAnt. However, unfortunately, when using the webNLG dataset, we found no clear
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correlation between the difficulties of probing tasks and the performance of a probing
classifier.

Second, the aim of the probing study is to understand what and how much linguistic
information each model can learn and use the results to interpret the model’s behaviours.
Intuitively, if a model learns more linguistic information than other models, it will achieve
better RES classification performance. However, in the second study, we found that the
models that learnt more information (i.e., ConATT and c-RNN+BERT) performed worse than
those acquired less linguistic information. The situation is different when testing models
on OntoNotes, whose texts and uses of REs are more realistic than webNLG. As discussed
in the §5.4.4, in most cases, the model that performs poorly on probing tasks does not work
well on RFS classification.

Third, pre-trained word embeddings and language models have been proved effective in
many NLP tasks. However, in Study 2, we found that neither word embeddings (i.e., GloVe)
nor pre-trained language models (i.e., BERT) help RFS classification. Such an abnormal
phenomenon no longer exists in the present study because, when using the OntoNotes
dataset, models that incorporate pre-trained word embeddings and language models
always achieve better results compared to those that do not incorporate them.

In aggregate, the above three observations suggest that OntoNotes is more suitable for
studying human behaviours on reference.

The Use of ZPs

In §5.4.2, we concluded that among all models we have tested, c-RNN-char+BERT performed
the best. It works remarkably well on using ZPs in a pragmatically natural way. Now, we
look at how well it models the use of ZPs more closely. We found no significant difference
in its performance of selecting ZPs when doing 4-way classification (Figure 5.4) and 2-way
classification (Figure 5.5). Let’s focus on the 4-way classification in order to find out which
referential form is always confused with ZPs by the model. We observed that the use of ZP
was quite often confused with the use of pronouns. According to linguistic theory, both
pronominalisation and pro-drop happen when the target referent is salient enough in the
given discourse. Therefore, it is understandable that ZPs and pronouns are easily confused
since it is hard for a model to make such a fine-grained decision of when the target referent
is salient enough for pronominalisation but not salient enough for pro-drop. Additionally,
the use of ZPs is also easily confused with the use of description. One possible explanation
is that the OntoNotes dataset is not a balanced dataset, 50% of which are descriptions
while only 13.6% of which are ZPs. Such an unbalance distribution makes the trained
model the trained model to be biased towards non-descriptions (i.e., ZPs, pronouns, and
proper names).

Regarding the learnt linguistic information, we found, when doing 2-way classification
(i.e., deciding whether to use ZP or not), models were good at acquiring information
about the syntactic position and about referential status. This is in line with the use
of ZPs in OntoNotes. Specifically, we found 9827 REs out of 9897 REs that are ZPs in
OntoNotes training set and 8944 REs out of 9897 REs are discourse-old. This suggests
that c-RNN-char+BERT did well on modelling human use of ZPs rather than simply learnt
artefacts in the corpus.
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5.5 Summary

In this chapter, we focused on the use of REs in linguistic contexts (i.e., contexts are texts).
Particularly, we were interested in the use of Zero Pronouns (ZPs) in Mandarin.

In the first place, we attempted to use the RSA framework as a tool to understand how
Mandarin speakers choose between ZP and overt RE. The model we built took various
factors, including the salience of referents, recency, as well as speech cost, into consideration.
Benefiting from a Bayesian decision-making process, this simple statistical model worked
respectably.

Building on the findings of the first study: factors like recency and referent salience do
affect the use of ZPs in Mandarin.

We then decided to broaden our focus from merely the use of ZPs to all types of
referential forms, such as pronoun, proper name, description, and demonstrative. To this
end, we defined the task of RFS based on the webNLG corpus following a similar paradigm
of the End2End REG task (Castro Ferreira, Moussallem, Kadar, et al., 2018) and tackled the
task by means of neural methods. Considering that these tasks have seldom been explored
using neural methods and that the webNLG corpus is in English, in the second study, we
focused on RFS in English and left RFS in Mandarin to the third study. By evaluating a
number of neural-based RFS models on the webNLG corpus, we surprisingly found that
the simpler c-RNN model outperformed the ConATT model as well as BERT. To interpret the
results and the behaviours of neural models, we conducted probing studies and introduced
several probing tasks. The probing studies’ results suggested that, on the one hand, these
neural models learnt information that has been proved effective for the choice of RFs by
theoretical linguists. On the other hand, we also found that more complex models, e.g.,
BERT, learnt more useful information than simpler c-RNN The reason why these complex
models cannot achieve better results on webNLG than c-RNN is probably that the texts in
webNLG are too short and too formal to study discourse-related aspects of RES.

In the third study, we extended the work in Study 2 to Mandarin Chinese. We started
with building an RFS/REG corpus based on the Chinese OntoNotes dataset, whose texts
are more natural. This time, c-RNN still performed remarkably well. It received scores that
are similar to the ConATT model. Moreover, models that incorporate pre-training language
models (i.e., BERT) or word embeddings significantly defeated models that do not use
them. The results of the probing study are consistent with the winning of BERT: it learnt
significantly more linguistic information than other models.

So far, we have talked about one-shot REG and REG in Context. These two types of
REG tasks are both about one specific function of NP: Referring. Next, we will look at
another function of NP: Quantifying.
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CHAPTER 6 I

Quantified Description
Generation

Abstract. A prominent strand of work in formal semantics investigates the ways in which
human languages quantify over the elements of a set, as when we say “All A are B”, “Few
A are B”, and so on. Building on a growing body of empirical studies on this subject matter,
which sheds light on the meaning and the use of quantifiers, we extend this line of work by
computationally modelling how human speakers textually describe complex scenes in which
quantitative relations play an important role. We first describe a series of elicitation experiments
in English in which human speakers were asked to perform a linguistic task that invites the
use of quantified expressions. We explain how we analysed the resulting corpus. We then
extend such experiments into Mandarin Chinese. We provide an initial analysis of the use
of quantified descriptions in Mandarin and compare that in English. At length, we explain
how these experiments inspire to build computational models of human quantifier use that was
subsequently evaluated.

The publications related to this chapter are:

1. Chen, G., van Deemter, K., & Lin, C. (2019). Generating quantified descriptions
of abstract visual scenes. Proceedings of the 12th International Conference on Natural
Language Generation, 529-539. https:/ /doi.org/10.18653/v1/W19-8667

2. Chen, G., van Deemter, K., Pagliaro, S., Smalbil, L., & Lin, C. (2019). QTUNA: A
corpus for understanding how speakers use quantification. Proceedings of the 12th
International Conference on Natural Language Generation, 124-129. https://doi.org/10.
18653/v1/W19-8616

3. Chen, G., & van Deemter, K. (2021). Computational modeling of quantifier use:
Elicitation experiments, models, and evaluation. Journal Paper in Preparation
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QUANTIFIED DESCRIPTION GENERATION

6.1 Introduction

The aim of this chapter is to report on our work on a computational model of human
speakers’ use of quantified noun phrases (NPs) in descriptions of simple scenes in both
English and Mandarin. Let us clarify our aim by putting our work in its historical context.

Quantified NPs are studied in different research traditions. For example, much work
has been done by formal semanticists, often building on the idea that the prime function
of an NP is to express quantitative relations between sets of individuals. The study of
Generalised Quantifiers, as it is often called, can be understood as an attempt to understand
the huge variation in quantifier patterns: not only we can say things of the form All A are B
and All except 2 A are B, but also Most A are B and Few A are B, which are not expressible
in First Order Predicate Logic (FOPL). Quantifiers can also play other logical roles, for
instance when we say “There are (some/few/etc.) A”, where the quantifier has only one set
argument. Clearly, a speaker who describes a situation by using quantified NPs faces a
large range of options, many of which express different propositions.

Building on earlier logical work (Mostowski, 1957), these issues were studied in Bar-
wise and Cooper (1981) and further elaborated in works such as Keenan and Moss (1985)
and van Benthem et al. (1986). Key questions include “What is the subset of all the the-
oretically possible quantifiers that natural languages can actually express, and what do
these quantifiers have in common?” Connected with this is a long tradition of work on
interactions between quantifiers, focusing on issues such as quantifier scope ambiguity
(e.g., Kurtzman and MacDonald (1993) and Montague (1973)) and intensionality (e.g., Mon-
tague (1973)). An overview of work in these combined “logical” traditions can be found
in Peters and Westerstahl (2006).

A more empirical strand of work asks how human speakers produce and comprehend
quantified NPs, focusing not so much on the range of variation that fascinates formal
semanticists, but more on properties of one particular quantifier (Kotek et al., 2015; Lidz
et al., 2011), or differences between small sets (e.g., pairs) of quantifiers (Geurts & Nouwen,
2007; Lappin, 2000; Moxey & Sanford, 1993; Solt, 2016; Zajenkowski & Szymanik, 2013),
often focusing on vague quantifiers, and focusing on quantifiers in a fixed sentence position
(e.g., the position Q in the sentence “Q of the circles are round”). A smaller body of
work links the two traditions of research on natural language quantifiers by investigating
the relation between quantifiers’ logical types and human comprehension of quantified
expressions (QEs, Szymanik et al., 2016).

In recent years, many areas of human behaviour have been “simulated” using computer
programs, including human memory, logical reasoning, and so on (see e.g., Sun (2008)),
resulting in a methodological paradigm sometimes referred to as computational modelling.
This paradigm has been extended to human language production as well (van Deemter,
2016, Section 16.1). In the spirit of this work, we want to construct a computational model
of human quantifier use. Unlike process models which characterise the manner in which
humans perform a given task, our models merely characterise the input-output behaviour
between scenes perceived and descriptions uttered. Models of this kind are known as
product models (see Sun (2008) and §1.1). Product models often focus on predicting how a
human speaker would verbally describe a given visual scene (without claiming that the
steps that our algorithms take resemble processing steps undertaken in the human mind);
in other cases, they focus on producing outputs that are optimal for hearers or readers. !

For further discussion of these perspectives, please see van Deemter, 2016, particularly Chapter 16.1.
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The models presented in this work will be evaluated both in terms of the extent to which
the descriptions they produce are perceived to resemble human-produced descriptions,
and, especially, in terms of their utility for human readers.

We consider our models to be a valuable addition to the more ubiquitous computational
models that focus on interpreting natural language because the former embodies an insight
into what utterance is most appropriate in a given situation: thus, the model embodies an un-
derstanding of expressive choice. In a nutshell, “Why do we say what we say?", addressing
both the strategic aspect of this question (i.e., What do we say?) and the tactical aspect (i.e.,
How do we say it?). The expressive choice is the defining challenge of the research field of
NLG (see §2.1).

Given that modelling the full range of speakers’ use of quantifiers is an extremely
ambitious goal, we focus on simple situations, where there is only a limited range of
objects to talk about, and a limited range of things to say about them, embedded in a
simple communicative setting that minimises the role of such “complicating” factors as
background knowledge and expectations that the speakers or hearers may have about the
domain. To build a good model, one needs to know:

1. What utterances, including what quantified expressions, are likely to be uttered by a
speaker in a given situation?

2. If a given quantified expression is uttered, what information does it convey?

Aspects of these questions have been addressed before. For instance, Yildirim et al. (2013)
investigated speakers’ use and hearers’ interpretation of the quantifiers some or many.
Herbelot and Vecchi (2015) looked at no, all, most, some, and few; 1. Sorodoc et al. (2016)
focused on no, some, and all. However, these studies only focused on a small set of
quantifiers.

Building on evidence that hearers interpret quantifiers probabilistically (Degen &
Tanenhaus, 2011; van Tiel, 2014; Yildirim et al., 2013), works such as Franke (2014) and
Qing (2014) built probabilistic speaker models for these two quantifiers, i.e., some and many,
based on Bayesian pragmatics (Frank & Goodman, 2012). ? To the best of our knowledge,
there have been no attempts to model computationally how a wider range of quantifiers
are used by human speakers, let alone in a setting that allows unlimited choice of sentence
patterns.

To get a first glimpse of the challenge, consider a table with four coffee cups, three
of which are red while the remaining one is white. Each of the following expressions
describes this scene truthfully:

(66) There are some red cups on the table.
At least three cups are red.

Fewer than four cups are red.

All the red objects are coffee cups.

Three of the four cups are red.

oo o

Each of these sentences could be uttered felicitously in some contexts. For example, (66-a)
might make a fine answer to the question, Is the table empty now?. However, as a description

Barr et al. (2013) elicited noun phrase patterns of the form the square with Q dots/dashes/etc; though this gave the
authors a range of different quantifiers, the sentence pattern was once again fixed; moreover, the paper does
not attempt a computational model. More recently, Pezzelle et al. (2018) formalised a cloze test based quantifier
selection task, where they asked models to predict which quantifier is used in a given context.
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of the scene as a whole (e.g., answering the question, Can you tell me what’s on the table?),
(66-e) would probably be more effective. An early computational investigation of the
question of what quantifiers are called for in a given situation (Creaney, 1996) was based
on the principle of informativity. This principle asserted that the speaker should always
choose the logically strongest expression that holds true in a given situation. Although the
idea of looking at the logical strength of an expression makes sense, Creaney’s idea runs
into obvious difficulties over pairs of expressions that are logically independent of each
other, such as the pair of (66-b) and (66-c), where either of the two expressions conveys
some information that the other one does not. Examining the evidence, we suspect that
no single “principle” can tell us what makes the best description of a visual scene, and
that a radically different, more empirically guided approach is called for, to inform the
generation algorithm. The present work offers such an approach.

A tricky problem that our enterprise runs into is that even simple quantified expressions
harbour a considerable amount of ambiguity and vagueness. The ambiguity of most and
many is well-attested (Kotek et al., 2015; Lappin, 2000; Lidz et al., 2011; Solt, 2016;
Zajenkowski & Szymanik, 2013), but even apparently simple quantifiers such as all and
some can be far from clear: if I say some A are B, can I be taken to convey that there is more
than one A? Do I imply that some A are not B? These issues are widely acknowledged (e.g.,
Peters and Westerstahl (2006)), but far from resolved.

Additionally, almost all the work on quantification so far are merely considered quanti-
fiers in English. Very few of them have their eyes on other languages, such as Mandarin.
The uses of quantifiers in Mandarin are very different from those in English. For example,
a corpus study of vague quantifiers in English and Mandarin (A. Y. Wang & Piao, 2007)
suggested that there are more vague quantifiers in Mandarin than in English and vague
quantifiers are more fine-grained. For example, the quantifier many can be translated to
“PF%” (xidud), “%” (zhongdud), “IRZ"” (héndud), and “K£"” (zhongdud), but they are
interpreted as different quantities by Mandarin speakers. In line with the topic of this
thesis, in addition to quantification in English, we are also curious about how Mandarin
quantifiers are used and how they are different from the use of English quantifiers.

To obtain more insight into these issues, we decided to study situations in which the
sentence patterns are not given in advance, and where speakers are free to describe a
visual scene in whatever way they want, using as many sentences as the speaker chooses,
and using any sentence pattern that they choose. This setup has the advantage not only
of allowing participants to use language in a slightly more natural way than in earlier
experiments (i.e., uttering full sentences); it also had the advantage of leaving the decision
of whether or not to use a quantifier to the speaker herself. Last but not least, it permits
the use of quantifiers of all possible logical types.

For this purpose, we conduct a series of elicitation experiments, in which each participant
is asked to produce descriptions of visual scenes. For example, for the scene presented
in Figure 6.1, a participant in our experiment may say “Half of the objects are blue squares,
the other half are circles in both colours.” For want of a better name, we call such a stretch
of text a Quantified Description (QD). Such an elicitation experiment is first conducted in
English and yield an English corpus that we call QTunA. We believe that this corpus will
be a source of inspiration for researchers in various research areas, including students of
Generalised Quantifiers (in the intersection of Linguistics and Logic) and psychologists
interested in human language production. Subsequently, we extend the QTUNA experiment
to Mandarin quantifiers, and, in a similar way, we produce a Mandarin version of QTUNA,
namely MQTUNA.
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Figure 6.1: An example scene in QTUNA with 4 objects. Other scenes contain 9 and 20
objects.

Based on an analysis of QTUNA, we design two rule-based “Quantified Description
Generation’ (QDG)’ algorithms, which mimic the types of quantified descriptions that
human speakers use in any given situation; a rule-based approach is chosen because it
allows us to link with the theoretical literature on quantification, and with computational
models of other linguistic phenomena. We then evaluate our algorithms on oTUuNA and
find that these work rather well, both in terms of describing scenes in the QTUNA corpus
and in terms of describing scenes of different sizes (i.e., domain sizes not occurring in the
corpus). At length, we sketch possible ways to apply such algorithms on the MoTUNA
corpus.

6.2 Study 1: Understanding the Use of Quantifiers in English

We introduced the TUNA experiment in §2.2.1 and used TUNA corpus to understand the use
of referring expressions in Chapter 4. In order to understand how people use quantification
in English, we decide to use a similar methodology while taking on-board the lessons that
were learned from TuNA and adapting the method to the study of quantification. This
new experiment is called the QTUNA experiment, which led to the QTuNA corpus.

6.2.1 Eliciting Quantified Descriptions

As discussed, we want to find out how a broad range of quantified NPs is used as part
of a wider communicative task. Instead of showing our subjects a scene and asking them
how they would explain to a hearer how many so-and-so’s (e.g., circles) are red (e.g., Many
circles are red.), we asked them to describe the scene as a whole. We made the scenes complex
enough so that one simple QE would never suffice. Scenes came in different sizes; we use
the variable N to represent the size, i.e., the number of objects in a given scene.

Each participant was presented with a series of abstract visual scenes in certain domain
size. Instead of using realistic photographs, we decided to use “synthetic visual scenes”
because this makes it easy to construct and modify the scenes in whatever way necessary
(cf., Pezzelle and Ferndndez (2019) and Testoni et al. (2019)). Each scene contains N objects,
each of which is either a circle or a square in either blue or red. Our instructions to
participants (see Figure 6.3) asked participants to try to produce a QD that would allow a
reader to reconstruct the scene modulo location (i.e., to reconstruct the scene except for the
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Figure 6.2: An example scene with the size of 4.

location of each object), thus ensuring a focus on quantity. Pilot experiments had taught us
that without the “modulo” clause, many participants focused on location to such an extent
that led to a large reduction in the number of different quantifiers used.

Materials

As shown in Figure 6.2, in each scene, there are N objects. In this study, we tested three
different values of N: 4, 9, and 20. Each object has two attributes: shape and colour. Both
of these two attributes have two different values, so there were 4 possible combinations of
attributes (i.e., blue square, blue circle, red square and red circle). Since there were at least
4 objects in each scene, the number of attribute combinations can vary from one (i.e., all the
objects are the same) to four. In our experiment, we ensured that all these variations are
presented (i.e., there were scenes with 4, 3, 2, and 1 number of attribute combinations). In
addition, we took care to balance shape and colour. For example, in the N = 4 experiment,
from the set of scenes where there are 2 combinations, we selected one in which the two
combinations differ in terms of colour (2 red squares and 2 blue squares), and one in which
they differ in shape (2 red circles and 2 red squares).

Furthermore, instead of placing the objects in a grid (as was done in our earliest pilots),
we placed objects in a more random layout as in Figure 6.2. The changes that we made on
the basis of our pilots proved to be very effective in letting speakers produce descriptions
that meet the requirements spelt out above, leading to a richly varied set of QDs.

Designing a workable set of instructions for participants proved to be a challenging
task, so we decided to start with a series of pilot experiments before conducting the
real experiment. Apart from the requirement of avoiding participants mentioning the
location of each object, we also needed to discourage them from performing what we called
enumeration, as when different kinds of objects in the scene are listed one by one. This
had happened frequently in some of our pilot experiments, causing only a small range
of (mostly existential) quantifiers to be used. For example, a scene like Figure 6.2 was
described as follows:

(67) There are two blue squares, one red square, and one red circle.
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We'd like you to describe each situation in one or more grammatically correct English sentences. (...)

1 Based on your description, a reader will try to “reconstruct” the situation. We use the word
“reconstruct” loosely here, because the only thing that matters is the different types of objects
that the sheet contains. Therefore, please do not say *where* in the grid a particular object is
located (e.g., “top left”, “in the middle”, “on the diagonal”).

2 Each object is a circle or a square, and either red or blue. Your reader knows this.

3 Please do not “enumerate” the different types of objects. For example, do not say “There is a red
circle, two blue circles, and ...”.

4 Every situation contain four objects. Your reader knows this in advance, and he/she will take
this information into account when interpreting your description.

Figure 6.3: The sketch of how an instruction looks like, taking N = 4 as an example.

While these descriptions are as legitimate as others, they do not show us a wide range of
quantifier patterns. To ensure that descriptions fulfill a concrete purpose, we also wanted to
encourage descriptions that are logically “complete”, by which we mean that participants
should do their best to produce a description that allows readers to reconstruct the situation
in all respects except the location of the objects; we made this exception because pilot
experiments had shown that if describing the location of objects is part of what we ask
speakers to do, then expressions of location (e.g., “far away in the upper-left corner, right
next to ...”) will tend to dominate their descriptive task, distracting from the quantification
phenomena we wish to focus on.

In an early pilot experiment, we tried to encode the above requirements explicitly in
the instructions, saying things like, “do not use numerals when describing the situation” and
“do not describe the location of objects”. However, this did not work well, because many
subjects still used enumerations and locations. After a number of pilots, we decided to
omit these explicit rules. Instead, we asked subjects to avoid enumeration as much as
possible and added two examples in the instructions, explaining how one of them would
allow a reader to reconstruct the situation whereas the other did not. For instance, in the
N = 4 experiment, the two examples are:

(68) a. There are equally many circles as squares. All squares are blue. Half the circles
are blue.
b. Half of the objects are blue squares.

Figure 6.3 depicts what the instruction for the N = 4 experiment looks like. The avoidance
of enumeration may have diminished the ecological validity (Schmuckler, 2001) of our
findings, but we believe that this is more than out-weighted by the increased richness of
the resulting descriptions.

Design

We considered one variable in this study: the domain size N to find out how domain size
impacts the use of quantifiers. We conducted three different experiments, with domain
sizes (N) of 4, 9, and 20 respectively, each containing 10 different scenes. Figure 6.2 and
Figure 6.4 show two examples from the N = 4 and the N = 9 experiment respectively.
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Figure 6.4: An example scene with size of 9.

Participants and Procedure

Participants were asked for a self-rating of their fluency in English (native speaker, fluent,
not fluent). Participants who rated themselves as not fluent were not included in the corpus.
At length, 66, 63, and 58 participants (excluding those who did not finish their experiment)
completed N = 4, N = 9, and N = 20 experiments, respectively. Participants in each
experiment were asked to read the instruction first and complete the experiment (10 scenes)
in one sitting.

6.2.2 The QTUNA Corpus

Our experiments yield a corpus with 3 sub-corpora corresponding to the 3 scene sizes.
Here, we introduce the corpus and its annotation.

Data Cleaning

We manually filtered out all descriptions from subjects who showed a misunderstanding
of the task: (1) writing gibberish; (2) describing the scene by enumerating the objects in it;
or (3) describing the scene by expressing locations (e.g., “.. at the bottom right corner of
the screen”). The resulting corpus QTUNA contains 656, 380, and 378 valid descriptions for
the three domain sizes, which contain 1401, 638, and 543 QEs.

Annotation

Since we want to design algorithms that mimic how people use quantifiers, we needed
to annotate the descriptions in the corpus with their semantic representations. QEs
in QTUNA are quite different from the referential descriptions in TuNA, where the
core of the annotation for a given utterance is always simply a set of properties (e.g.,
{shape = square, colour = red} when the expression said “The square that is red”). A
new annotation scheme needs to be designed, which records quantifier patterns as well as
the ways in which they were filled.

Recall that QEs express relations between sets. Following Barwise and Cooper (1981),
we annotated the QEs in a form in which each n-ary quantifier is a function Q that takes
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a number of set terms as arguments. For example, a QE with a binary quantifier can be
written as: Q(A, B).

To keep the annotation task — and the later construction of the generation algorithm —
manageable, we made a few simplifications. For example, we took the view that all and
every in all/every objects are red express the same quantifier. Table 6.1 lists the top-10 most
frequently used quantifiers and their frequencies in our corpus. In our annotations, A, B, ...
are sets. BS,BC,RS,RC, R, B,C and S stand for blue square, blue circle, red square, red
circle, red object, blue object, circle and square set, respectively. O refers to the set of all
objects in a situation. * For example, for the QE:

(69)  All objects are red squares.

our annotation says All(O, RS). More annotation examples can be found in Table 6.2.

In the current version of the corpus, anaphors were replaced by their corresponding
antecedents. For example, the description:

(70)  Most of the objects are blue. Half of them are squares.

was labeled as Most(O, B) A Half(B, S). Note that the pronoun them can refer to all the
objects or only the blue objects, causing an unwanted ambiguity. When annotating such
cases in the corpus, we chose a “charitable” approach: if one interpretation causes a given
description to be logically complete and another causes it to be logically incomplete, then
annotation sides with the former. This rule applies to all kinds of ambiguities that we
encountered in our annotation work. Whenever a description contains more than one QE,
our annotation records their left-to-right order.

6.2.3 Hypotheses

First of all, we were curious to see how much variation in linguistic descriptions the scenes
of the QTUNA experiments would permit, and how much variation we would see between
speakers. We were curious what quantifiers and quantifier patterns would be used and how
these would be expressed linguistically; knowing this is also essential for the computational
models that we were to develop later.

Following our pilot experiments, we were also curious to know how much information
would be conveyed. How often did speakers under-specify (i.e., when they did not say
enough to allow a hearer to reconstruct the scene), over-specify (i.e., saying more than
necessary), and how often did they use vagueness (e.g. saying things like “a few ...")? What
information would be expressed explicitly and what information would be left implicit (i.e.,
left to be inferred by the reader). Furthermore, we were interested in knowing whether the
fact that one attribute (e.g., shape) is more easily expressed as a noun than the other (e.g.,
colour) has implications for its position in a quantified pattern. Given that most diagrams
require several QEs for their logically complete descriptions, we were also interested in
what order quantifiers tended to appear in a description. We, therefore, set out to address
the following questions.

3 There are also notations for second-order sets, which will be discussed later.
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Frequency

Notation Surface Form(s) Example Quantified Expression(s) N=i N=9 N=20 Toml
all all; every; each All A are B. / All of the A are B. 436 147 91 674
most most Most A are B. / Most of the A are B. 27 63 56 146
more more There are more A than B. 67 23 37 127
half 50%; half Half of A are B. 76 12 15 103
equal equivalent; equal/same number There are/is the same number of A and B. 72 8 23 103
some some There are some A. / Some A are B. 2 30 66 98
majority  majority A majority of A are B. / The majority of A are B. 24 23 14 61
only only There is only A. / Only A are B. 38 13 4 55
half-rest half .., the other half ...; half ..., Half of A are B, and the other half are C. 38 0 5 43
the rest/remaining ...
more-half more than half More than half of the A are B. 28 1 3 32

Table 6.1: Top-10 most frequently occurring quantifiers with English examples and frequencies in the three QTUNA sub-corpora.
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N Description Meaning

There are 4 squares. All objects are blue. 3_4(S) AAlL(O, B)

9 Most of the items are red circles, but there area Most(O, RC) A 3>,(BS)
couple of blue squares.

20 All the objects in the picture are circles and  All(O, C) A Majority (O, B)

majority of them is blue.

'S

Table 6.2: List of example descriptions from the QTUNA corpus, with their annotations. N
indicates scene size (i.e., the total number of objects in the scene).

How often do speakers manage to describe a scene completely and correctly?

We say a description is complete if the scene described is the only one (modulo location)
from all possible scenes of the same size that fits the description, given the background
assumptions conveyed in the instructions to participants (i.e., that there are only circles and
squares, and that they can only be red or blue). Since producing a complete description re-
quires much more work (or, sometimes, is impossible) in a larger domain, we hypothesised
(H1) that larger domains give rise to a smaller proportion of complete descriptions than smaller
ones.

This hypothesis is not easy to test because speakers frequently rely on inference when
describing a scene, and because the meaning of quantifiers like most, some, or few is not
cast in stone. Consider the following two examples from one of our pilots:

(71) a. Half of the objects are blue.
b. Everything is blue. Most things are square.

For the description (71-a), given that there are only two colours (i.e., blue and red), we
infer that the other half are red. Or, in the description (71-b), if most means not just “more
than half” but also “not all”, then the description completely describes a scene with 3 blue
squares and 1 blue circle, despite not saying this explicitly.

For similar reasons, since describing larger domains requires more work, so the task
itself becomes harder, and mistakes (e.g., counting mistakes) become more likely. We,
therefore, expected (Hy) that, in larger domains, there are more descriptions that convey incorrect
information. Information is incorrect if it is not true with respect to the scene. For example,
the description “all objects are blue” is incorrect if it describes a situation where all objects
are red.

When do people use vague quantifiers?

People frequently use vague quantifiers, such as many, some, and most (see e.g. Moxey and
Sanford, 1993). We wanted to see how the proportion of vague quantifiers in our corpus
changes with scene size. The larger a domain, the harder it is to see at a glance how many
objects there are in each of its set-theoretic regions (e.g., A, B, AUB, ANB,A—B,B—A,
and the domain O of objects as a whole). We, therefore, hypothesised (H3) that, as the
domain size (N) increases, more vague quantifiers appear.
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Are larger scenes described more elaborately?

Since there is more to describe in a large domain than in a small one, we expected (H4)
that participants produce longer descriptions in larger scenes.

Left-to-right order of QEs.

Recall that most descriptions in the QTUNA corpus consist of multiple QEs. In pilot studies,
speakers tended to employ two discourse structures. The first start by describing the whole
scene, e.g., “all objects are blue”, followed by a more detailed statement, e.g., “half of them
are squares”. A second, more frequent, discourse structure cuts the set of objects into two
parts, each of which is described separately. Focusing on the second discourse structure,
we hypothesised (Hs), The most important information tends to be stated first. More precisely,
there are two types of situations. In the most common type, a scene is described using
a succession of two QEs, each of which has two set-arguments (i.e., each has the form
Q(A, B), which is by far the most common form). Such quantifiers can be understood
as being “about" the intersection of the two arguments (i.e., about A N B). Hypothesis
(Hs) says that the first of the two QEs is usually “about" a larger set than the second. For
instance, “3/4 of A are B, 1/4 are C” is much more frequent than “1/4 A are C, 3/4 are B”). The
second type of situation covered by H; is similar, except the second QE is left implicit. For
instance, “3/4 of A are B,” is much more frequent than “1/4 A are C”.

Are there any differences between the use of colour and shape?

Given the well-documented primacy of colour over shape in referring expression (Pech-
mann, 1989; van Deemter, Gatt, Sluis, et al., 2012), it seemed plausible to us that colour
and shape play different roles in QFs as well. * Based on our pilot experiments, in which
colour was often realised as an adjective, we hypothesised that (H), in k-ary (k > 1) QEs,
shape occurs more often in the former arqument places (i.e., the A position in the QE: Q of A are
B) and colour in later positions. For example, we expected to see more expressions like “all
circles are red” than ones like “all blue objects are circular”.

6.2.4 Hypothesis testing

We tested the hypotheses introduced in §6.2.3. In order to test the first hypothesis H1, we
annotated each description in QTUNA for being complete or not. ° Considering the above-
mentioned challenges, when annotating the corpus, instead of relying on the formalisation
of the meaning of quantifiers, it was annotated, for each description, whether it is logically
complete or not. Annotating for completeness was about whether the situation can be
fully reconstructed based on a description. In accordance with our rule of charitable
interpretation, if a description was ambiguous, the final category (complete or incomplete)
was decided using the “best” interpretation of the description. Completeness annotation
was performed by two annotators. Where disagreements occurred, the annotators discussed
their initial judgement and made a final decision together. In this way, we found 46, 205
and 355 incomplete descriptions from 656, 380 and 378 descriptions of the three sub-corpus
respectively (Table 6.3). As one can see, incompleteness frequencies appear to grow with

As is usual, we take k-ary QEs to be ones whose quantifier relates k sets
See, for example, Coventry et al. (2010) for problems assessing the meaning of most.
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Quantified Description 656 380 378
Quantified Expression 1401 638 543

Complete Description 610 175 23
Incomplete Description 46 205 355
Vague Quantifier 57 201 234
Wrong Description 7 12 47
Larger Part First 123 145 99
Smaller Part First 72 54 10

Table 6.3: The number of quantified descriptions, quantified expressions, incomplete
descriptions, vague quantifiers, and wrong descriptions in each sub-corpus of QTUNA.

scene size. Fewer than 1/10 descriptions in N = 20 sub-corpus are complete, most of
which come from scenes with only one property combination (i.e., all the objects in a
scene look-alike) or two property combinations. We conduct a binary logistic regression
analysis (setting completeness as the outcome variable and domain size as the predictor)
on the annotated data. The result confirms our hypothesis H; that there are less complete
descriptions in larger domain (p < .001, adjusted p < .001). ©

For the second hypothesis H,, we annotated, for each description, whether it is correct
or incorrect (a “wrong description"). If the property was debatable, it was considered to be
correct. Such cases often occur with colour terms, for example, the colour of a red circle
was sometimes described as orange; since only red and blue were permitted, there was no
confusion possible so we considered such descriptions to be correct. We found 7, 12 and 47
wrong descriptions for the three scene sizes. The high proportion of correctness (minimally
87.57% for N = 20) indicates that most of our participants understood the instructions, yet
it suggests an overall association between the domain size and the error frequency, which
is confirmed by a binary logistic regression analysis (setting correctness as the outcome
variable and domain size as the predictor; p < .001, adjusted p < .001).

H3 asserts that vague quantifiers appear more frequently in larger scenes. In accordance
with common practice (e.g., Kenney and Smith (1996)), we understand a quantifier to be
vague if it permits so-called borderline cases (i.e., cases in which it is unclear whether the
QE is true or false). We counted the number of QEs that use vague quantifiers (e.g., many
and few). 7 The number of QEs was compared with the total number of QEs, as listed in
Table 6.3. The trend of more vague quantifiers in larger domains (i.e., H3) was confirmed
(p < .001, adjusted p < .001) as by a binary logistic regression analysis. ®

To test H4, we also calculated the length of each description, as defined by both the
number of QEs (Figure 6.5(a)) and the number of words (Figure 6.5(b)) in the description.
The results show the opposite of what we expected, that is, the length of descriptions

Adjusted p is the p-value obtained by applying Bonferroni correction, where the p-value is multiplied by 6 as
there are 6 hypotheses.

A quantifier like most was always counted as vague, despite the fact that it might acquire a precise meaning when
N=4 (because when we say that most of a set of four 4 A are B, we can arguably only mean that three of the four A
are B.

If we had decided to count most as a precise (i.e., non-vague) quantifier when used in the N=4 domain, then this
would have further strengthened the support for Hs.
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Figure 6.5: The length of descriptions with respect to the domain size by means of (a) the
number of QEs; (b) the number of words.

decreased. We believe that a plausible explanation lies in the fact that speakers produced
fewer complete descriptions in larger domains, as in #;: after all, when a task is made
more complicated (in this case, because we move from smaller to larger scenes), the effect
can be that participants try less hard to perform the task perfectly (i.e., they lower their
standards).

Regarding the last two hypotheses, we first counted the number of descriptions that
describe the larger part of a scene first (i.e., descriptions like “3/4 of A are B, 1/4 are C” or
“3/4 of A are B”), and those that describe the smaller part first (i.e., descriptions like “1/4 of A
are B, 3/4 are C” or “1/4 of A are B”), the numbers for each N being shown in Table 6.3. This
confirmed (x?(2, N = 503) = 27.29,p < .001, adjusted p < .001) the hypothesis that the
most important information tends to be stated first (Hs) by a Chi-squared test. In a similar
way, we then counted the number of descriptions that place shape in the first argument
while placing colour in the later argument (i.e., descriptions like “all circles are blue”), and
the number of descriptions that order the two attributes the other way around (e.g., all blue
objects are circular). As for shape, 489 descriptions used it in the first argument place and 121
in the second; for colour, those two numbers are 112 and 514 respectively. Consequently, a
Chi-square test confirms this hypothesis Hg (x?(1, N = 1236) = 479.59, p < .001, adjusted
p < .001).

6.2.5 Post-hoc Observations regarding the QTUNA corpus

We also made a number of post-hoc observations. These should be distinguished from the
earlier-listed hypotheses, which were formulated before we saw the data of the experiment.
3-ary Quantifiers

Besides binary quantifiers, we found a substantial number of 3-ary quantifiers. One class
of examples is half ..., the other half ..., one ..., the rest ..., half ..., the rest ... and so on. Note that
an expression such as (72-a) should not be confused with (72-b).

(72) a. Half of A are B, the other half are C
b. Half of A are B and half of A are C
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In (72-b), the sets A and B can have a non-empty intersection, but (72-a) means that % of
As are B,and (A—B) CC.

Higher-Order Quantifiers

We found a remarkable number of “higher-order" quantifiers, where quantification is not
over objects but over sets of objects. For example, the word “both" in the following example
quantifies over the set of colours:

(73) Half of the objects are in both colours.

Frequent examples of higher-order quantification can be found in descriptions of a situation
in N = 4 sub-corpus where all the objects are different. Many subjects used the descriptions
equivalent to (74).

(74)  All possible objects are shown.

This description quantifies over elements of the Cartesian product of the colour set and the
shape set (i.e., Some(O, BS) A Some(O, BC) A Some(O, RS) A Some(O, RC)).

Descriptions that Rely on Implicit Information.

This section describes a set of experiments, each of which assumes a small and precisely
defined domain of possibilities (e.g. scenes of N objects with only two attributes (shape
and colour), each of which has only two possible values). In these cases, one can frequently
infer more than say explicitly by considering the complementary relationship of two values
of one attribute. For example, if a subject says:

(75)  Half of the objects are blue.

The reader is entitled to infer that the other half of the objects are red. Descriptions
of this kind were marked as logically complete descriptions despite the appearance of
incompleteness.

6.2.6 Discussion

In this study, we investigated the use of quantifiers in English by conducting an elicitation
experiment and analysed the resulting corpus, namely oTuna. We analysed the complete-
ness, the correctness, as well as the vagueness of the human-produced QDs and found that
the domain size is a major factor that influences the use of quantifiers.

With the QTUNA experiment, two questions are yet to be answered:

1. What descriptions will be produced if the domain size is further increased? One
might expect that, similar to the findings of this study, the participants would produce
even more vague quantifiers, more incompleteness, etc. More details of this open
question will be discussed in Chapter §;

2. What types of QEs are produced in other languages? The use of quantifiers in
Mandarin is studied in the §6.3.
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6.3 Study 2: Understanding the Use of Quantifiers in Mandarin

In this study, we investigate the use of quantifiers in Mandarin following a similar paradigm
in study 1. Regarding this subject matter, we are interested in how Mandarin speakers use
quantifiers. On the one hand, one previous corpus study on a machine translation corpus
suggested that there are much more variations in QEs in Chinese than in English (A. Y.
Wang & Piao, 2007). For example, they found that in this parallel corpus, the quantifier
many was translated to “¥%” (xtidud), “%” (dud), “1R%” (héndud), and “Ak%” (zhong-
duo). Although all of them were translated as many, for Mandarin speakers, they represent
different quantities. The quantity of “fR£” is interpreted to be more than that of “£”,
and “Z” more than “#%”, and so on. According to A. Y. Wang and Piao (2007), they
literally mean some many, many, very many, and many many, respectively. Building on this
finding, we are curious how much variation will result if we do a QTuNa like experiment
on Mandarin speakers.

On the other hand, as discussed in the §3.1, we expected Mandarin Chinese to prefer
brevity but scarifie clarity. Therefore, in this study, we are curious whether the findings in
the first study still stand in hold true for Mandarin QEs as well. Additionally, we are also
curious how would Mandarin speakers use quantifiers differently from English speakers.
For example, the coolness hypothesis would make it plausible for us to expect Mandarin
speakers will use QEs in a less complete way and use more vague quantifiers than English
speakers. We will elaborate these hypotheses in §6.3.5.

6.3.1 Eliciting Quantified Descriptions in Mandarin

In MmQTUNA, We followed the same methodology as the QTUNA experiment. Roughly
speaking, we re-used some of the scenes of the QTUNA experiment, inherited the same
experimental design as QTUNA, and adopted the instructions to Mandarin from QTUNA.

Materials

To prepare materials for the MQTUNA experiment, we sampled scenes from QTUNA
following two steps. In the first step, we eliminated all scenes all of whose objects have
the same property. In other words, we removed all the scenes that can be described by
simply using one QE in the form of “all objects are ...”. Subsequently, for each domain size
(i.e., 4, 9, or 20), we randomly sampled 5 scenes from QTUNA. Unlike QTUNA, where
experiments with different domains were conducted separately, we planned to deliver a
single MQTUNA experiment which includes all three domain sizes. In other to minimise
the impact of presentation order of scenes with different domain sizes, we randomised the
order of the sampled scenes. ° In the second step, in order to make each subject familiar
with the experiment, we added a practice situation that uses a N = 4 scene whose objects
are the same. We put this practice situation at the very beginning of the experiment. When
analysing the results, we did not take it into account.

For the instruction, we simply translated the instruction of QTUNA and adapted some
to make the instruction in fluent Mandarin.

That is to get rid of the case where, for example, a subject see all N = 4 scenes before s/he see N = 20 scenes.
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Figure 6.6: The sketch of the instruction of MQTUNA.

Design, Participants, and Procedure

Same as QTUNA, we only considered one variable: the domain size, and tested N = 4,
N =9, and N = 20. Data from 32 participants were collected. All of our participants
are Mandarin native speakers. Participants were asked to read the instruction first and
complete the experiment (16 situations) in one sitting.

6.3.2 The MQTUNA Corpus

We cleaned the dataset in the same way as QTUNA. This resulted in 465 valid QDs, in
which there are 155 QDs for each domain size, and 1175 QEs, in which there are 383, 386,
and 406 QEs for N =4, N =9, and N = 20 sub-corpus, respectively. In table 6.4, there are
some example QDs from the QTUNA dataset.

We annotated the MQTUNA in the same way as QTUNA (see §6.2.2 for more details).
In line with the annotation of MQTUNA, for simplification, we viewed quantifiers that
have the same meaning (e.g., “FTH” (all) and “2&E” (all)) as the same quantifier and
used a single notation to represent them. Table 6.5 enumerate the top-10 quantifiers and
their usage in MQTUNA. Note that both “XZ%(” (dadudsht) and “Z%(” (dudshu) are
literally translated as most, but, “KZ%{” is often interpreted to be more than “Z %{".
Additionally, although “/0%%” (shdoshu) is translated as minority, it is always viewed as a
vague quantifier and, thus, it is, in some contexts, translated as a few.

As for the quantifier use, same with oTuNa (Table 6.1), quantifier “FTH” (sudyou; all)
and “—3" (yiban; half) are two of the most frequent quantifiers. We also notice that, in
the top-10 frequent quantifiers of MQTUNA, 4 of them are vague quantifiers, including “#f
KZH” (juédadudshi; overwhelming majority), “ K451 (dadudshiy; most), “Z 41" (dudshiy;
most), “/PEL” (shdoshiy; minority).

We also observed that most QEs are realised by means of the following three forms.

(76) a. QAZEB-
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N Description
, PTRERER, THRENY = -
All objects are blue. The number of squares is triple that of circles.
y THEREREGAK. HEAE—H -
All objects are blue but there is only one circle.
g EBSTHREEME . —FREELE-
There are equal numbers of circles and squares. Half of the circles are red.
g DTRRIBEERILEAN . JTREREER - JTRIVEE D TRIE A -
All circles are red. All squares are blue. There are fewer squares than circles.
g NHREBEBHEN=E. 2HLE.
The number of squares is triple that of circles. All of them are red.
g DTHER#RES. KZHERTHR. ARDLEE -
All objects are blue. Most of them are squares. Only a minority of them are circles.
oo PG EETREABBMEMEAK -
There is no big difference between the numbers of all combinations.
—AE, PR ZERTREEGTRE . BEEBEZ TAGRE -
20  Half of the objects are red, the other half of them are blue. There are more red
squares than blue squares and more blue circles than red circles.
F MBI 5 — o LEBRLTHES-
20  Half of the objects are squares, the other half of them are circles. There are more

red objects than blue objects.

Table 6.4: List of example descriptions from the MQTUNA corpus, with their annotations.
N indicates domain size.

QAshiB
Q A are B.

b. A¥QREB-

Q zhong Q shi B

(lit.) In A, Q are B.
BEAF Q-

B zai A zhong zhan Q
B takes up Q of A.

For example, suppose the quantifier is “AZ%{” and the target QE is KZ#((S, R), we
could say any of the following:

(77)

142

a. K R & AR -

dabufen fangkuai shi héngsede
Most squares are red.

b.  JiER R ORERS R LB -

fangkuai zhong dabufen shi héngsede
Among squares, most are red.

AEHE TR A G KD -
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Quantified Description 155 155 155
Quantified Expression 383 386 406

Complete Description 122 19 5

Incomplete Description 33 136 150
Vague Quantifier 25 143 184
Wrong Description 7 14 30
Larger Part First 30 129 116
Smaller Part First 6 9 11

Table 6.6: The number of quantified descriptions, quantified expressions, incomplete
descriptions, vague quantifiers, and wrong descriptions in each sub-corpus of MQTUNA.

héngsede zai fangkuai zhong zhan dabufen
Red squares take up most of squares.

We also note that “fT” cannot be realised using the pattern (76-c). This is because, in
Mandarin, “f§” can only be used as a modifier and, thus, it cannot stay alone after “(5”.

6.3.3 Hypotheses and Hypothesis Testing

We believed that our findings from analysing QTUNA about quantification are universal
across languages. We, therefore, expected that all findings in 6.2.4 still stand in MQTUNA.
To confirm this, we did all the counting work in 6.2.4 again on MQTUNA following the
same counting principles. Table 6.6 reports the counts of different types of descriptions,
expressions, and quantifiers. In what follows, we summarise the results:

1. H; hypothesises that there are more incomplete QDs in larger domains. We identified
33, 136, and 150 incomplete descriptions from the three sub-corpora, respectively. A
binary logistic regression test confirmed H; (p < .0001, adjusted p < .0001);

2. H, assumes that there are more incorrect QDs in larger domains. We counted the
number of wrong descriptions and observed more wrong descriptions in larger
domains. Wrong descriptions are likely to appear when the domain size is large and
two groups of objects in a scene have a similar amount. For example, when there are
11 red objects and 9 blue objects in the scene, the most frequent wrong description
1S:

(78)  —F 1 EE R A -

yiban de ttixing shi héngse de

Half of the objects are red.
We found 7, 14, and 30 wrong descriptions in the three sub-corpora, respectively.
A binary logistic regression test validated this hypothesis (p < .0001, adjusted
p < .0001);
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3. Hj is about the use of vague quantifiers in MQTUNA. It hypothesises that there
are more vague quantifiers in larger domains. We counted the number of QEs that
contains vague quantifiers and we found 57, 201, and 234 vague quantifiers from
383, 386, and 406 QEs of the three sub-corpora, respectively. This shows a clearly
increasing trend in the use of vague quantifiers with respect to the rise of domain
size and such a trend was confirmed significant also by a binary logistic regression
test (p < .0001, adjusted p < .0001);

4. H4 hypothesises that QDs in larger domains are also longer. We tested whether
Mandarin speakers tend to speak more QEs for scenes with larger domain sizes by
looking at the number of QEs in each QDs. Slightly different from QTuNA, QDs in
larger domains in MQTUNA on average consist of more QEs than those in smaller
domains. We computed the Pearson correlation between the domain size and the
QD length. Unfortunately, the difference was not significant (p = 0.1025, adjusted
p = 0.615) and, therefore, the H4 was also rejected in MQTUNA4;

5. Regarding Hs, same as QTUNA, a Chi-squared test validated that when describing a
scene, a participant is more likely to describe the larger part first (x?(2, N = 502) =
315.55, p < .0001, adjusted p < .0001);

6. Hg asserts that if a QE is in the form of Q(A, B), where one of A and B is describing
the shape and the other is describing the colour, then A is more likely to be the one
about shape. Among the whole MQTUNA corpus, there are 320 QDs of that form,
295 of which describe shape in A position while only 25 of which describe colour in
A position. A Chi-square test confirm this hypothesis (X2(2, N = 640) = 455.63,p <
.0001, adjusted p < .0001);

In a nutshell, all except the fourth hypothesis were confirmed. For this hypothe-
sis, though Mandarin speakers used slightly longer descriptions in larger domains, the
difference was not significant.

6.3.4 Post-hoc Observations

In addition to the post-hoc observations of QTUNA, such as the 3-ary quantifiers, higher-
order quantifiers, and complementary which are still standing in QTUNA, we also made
the following additional post-hoc observations.

A-drop

Let us coin a new phrase, analogous to the well-known term “Pro-drop”. For a QE Q(A,B),
we call the phenomenon of not explicitly mentioning the phrase in the position A as A-drop.
For example, the QE (79) drops the phrase “Ef£” (ttxing; object) which is understood to
be in position A.

(79)  KEBH & 60 .
dabufen shi héngsede
(lit.) Most are red.
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Similar to pro-drop (see §3.1 for more details), A-drop is frequent in Mandarin QEs. In
MQTUNA, we found that 304 out of 1175 QEs (approximately 25.87%) omit A. This happens
in two situations:

1. Parallelism: if a phrase referring to the same set appears in the previous sentence
and is also in position A, then it is omissible. It is worth noting that, as introduced
in §6.3.2, A does not necessarily serve as the subjects of QEs and phrases in the
A position are omissible regardless of which syntactic positions they are in. For
example, in addition to (79), one could also say “ZLE4H] &5 K#ER5” (héngsede zhan
dabufen; red objects take up most);

2. The phrase in the position A refers to “object”, for example, the QE (79).

Plurality

Building on the fact that Mandarin can express plurality implicitly (see §3.1), a QE is
sometimes less informative than an English QE, which probably makes the whole QD
incomplete. For example, consider the following Mandarin QE for N = 4:

(80) KA E A LGN ECHE -
tapian Ii ydu héngséfangkuai hé lanseyuanquan
There are red squares and blue circles in this picture.

There could be either one red square or multiple red squares given this QE. However, in
English, since both phrases are in their plural forms and given the domain size is 4, we can
easily know that there are 2 red squares and 2 blue circles.

6.3.5 Initial Comparison between the Quantifier Use in English and Mandarin

In Chapter 1 and §3.1, we linked the idea of coolness (C.-T. J. Huang, 1984) to the trade-off
between brevity and clarity in NLG and argued that coolness might suggest that Mandarin
prefers brevity over clarity. This said, one can expect that QDs in Mandarin are shorter
but are less clear than QDs in English. Based on this idea, we came up with the following
4 research questions. In the analysis below, we use the situations in QTUNA that use the
same scenes as those in MQTUNA. Also, note that we call the current analysis an “initial”
analysis because it is not a carefully designed language comparison study.

First, the major expected characteristic of being a brevity-favouring language is that the
length of Mandarin QDs should generally be shorter than that of English. Concretely, we
expected the QDs in MQTUNA to be shorter than QDs in QTUNA in terms of the number
of QEs per QD. We computed the average length of QDs in the two corpora and printed
them in Figure 6.7. As we can see, the trends do not go in the predicted direction. The
QDs in MQTUNA are generally longer than those in oTuNA. Additionally, as mentioned,
in QTUNA4, the length is decreasing with respect to the increase of the domain size, but,
in MQTUNA, there is no such trend. It needs more controlled experiments to say the last
words on this phenomenon and to explain why.

Second, linking clarity to the concept of completeness in QDs, we expected there
are more incomplete QDs in MQTUNA than in QTUNA. We counted the complete and
incomplete QDs in the two corpora, respectively, and reported the results in Table 6.7. In
total, 379 out of 710 QDs are complete in QTUNA while merely 146 out of 465 QDs in
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26
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Average Length of QDs
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4 6 10
Domain Size

Figure 6.7: Average QD length in gTuNA (blue) and MQTUNA (orange).

QTUNA MQTUNA

N Complete Incomplete Complete Incomplete p-value

4 298 32 122 33 p < .001
9 77 113 19 136 p < .0001
20 4 186 5 155 p=.5

all 379 331 146 319 p < .0001

Table 6.7: The number of complete and incomplete QEs in QTUNA and MQTUNA4, respec-
tively. N means domain size.

MQTUNA are complete. This confirms the hypothesis with a Chi-squared test (x*(2, N =
1175) = 54.93,p < .0001, adjusted p < .0001). Additionally, considering that QDs in
MQTUNA are generally longer than those in QTuNnA, Mandarin speakers tend to produce
longer descriptions but are less complete. Interestingly, if we look into more detail, we
found that such a difference exists only in situations whose domain size is 4 or 9. When
the domain size is large enough (i.e., 20), then the difference does no longer exist. In
other words, both English and Mandarin speakers find it hard to come up with a logically
complete description if the domain size is large.

Third, we are curious about the differences between the use of vague quantifiers in
English and in Chinese. For a similar reason (i.e., Mandarin favours brevity and breaches
clarity), we expect Mandarin speakers use more vague quantifier English speakers. In
English, we identified 222 vague quantifiers from 1342 QEs (approximately 16.54%). In
Mandarin, we found 352 vague quantifiers from 1175 QEs (approximately, 29.96%). A
Chi-squared test confirms the hypothesis (x?(2, N = 2517) = 64.04, p < .0001, adjusted
p < .0001).
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Last but not least, since QTuNA and MQTUNA were collected following similar
paradigms, we believed there should not exist a significant difference in terms of speakers’
production of incorrect descriptions. In other words, we expected that there is no difference
between the proportion of incorrect QDs in QTuNA and MQTUNA. However, this hypoth-
esis was rejected because we identified 39 incorrect QDs out of 710 QDs in QTUNA and
identified 51 incorrect QDs out of 465 QDs in MQTUNA ()(2(2, N =1175) = 1191, p < .001,
adjusted p < .01). One possible explanation is that the participants of MQTUNA tended to
write longer descriptions than those of QTuna (which has been approved above) and it is
more likely to write something wrong if one writes longer texts.

6.3.6 Discussion

In this study, we conducted an elicitation experiment about quantification in Mandarin,
namely MQTUNA4, and analysed the resulting corpus.

By comparing the findings of MQTUNA with the corresponding findings of QTuNA in
the first study, we assessed the coolness hypothesis in the context of quantification. As
for brevity, on the one hand, we found no evidence suggesting that Mandarin speakers
produce shorter QDs than English speakers. Moreover, what we found went in the opposite
direction, i.e., English speakers produced shorter QDs than Mandarin speakers. Here,
we have to note that we have not said the last word on this research question as the
current study does not make a direct comparison between English and Mandarin. On
the other hand, we identified several phenomena in relation to “coolness” and in line
with the coolness hypothesis. For example, A-drop frequently happens in MQTUNA, and
plurality is always expressed implicitly. As for clarity, it indeed was breached and we
observed significantly more incomplete QDs as well as significantly more vague quantifiers
in MQTUNA than in QTUNA.

6.4 Study 3: Computational Modelling of Quantification

In this study, we are aiming to construct a generation algorithm that is able to perform the
same task as was given to the participants in the QTUNA and the MQTUNA experiments,
which came in three scene sizes (N =4, N =9, and N = 20). However, we do not want
the algorithm to be limited to these scene sizes: we want them to perform well on scenes of
any reasonable size. We do not target scenes sized lower than 4 because we suspected that
these involve quantification to a much smaller extent (see the literature on “subitizable"
sets, from Kaufman et al. (1949) on-wards); scenes in which there are more objects than can
be counted in a few seconds were similarly beyond the scope of this study because they are
likely to involve guesswork and estimation on the part of the hearer, which is not the focus
of the present work (although future work may extend in that direction). Consequently,
neither very small nor very large scenes were tested in our evaluation experiments.

Even though our main aim is to model human behaviour since our speakers (in previous
studies) were asked to produce QDs that are correct (i.e., truthful) and complete (i.e., giving
as much information as can reasonably be expected), it seemed reasonable to design our
algorithms with these objectives in mind. In this study, we introduce algorithms that
endeavour to meet the above requirements as well as they can; later on, we will evaluate
our algorithms based on these two criteria and compare their performance with that of our
participants.
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Figure 6.8: The target scene as one among many possible scenes (N = 4).

You may recall that participants were told that, “based on your description, a reader will try
to “reconstruct” the situation”. We know that this was not always easy, particularly for larger
and more varied domain sizes; consequently, our speakers did not always produce correct
and complete descriptions. Therefore, we decided to also evaluate our algorithms using an
additional criterion that asks explicitly how “human-like” the descriptions generated by
it are. Below, we introduce the fundamental idea behind our algorithm, and we sketch a
pipeline architecture for producing QDs, all the way from a scene to an actual sentence.
We then propose two QDG algorithms. So far, these algorithms have only been evaluated
in English. We believe they are easy to be generalised to Mandarin QD.

6.4.1 The idea behind our algorithms

The basic idea is to regard the production of a QD as an attempt to identify, within the set
of all possible scenes, what specific scene we are looking at. In other words, the idea is to
view the task of our participants as — very broadly — analogous to the task of referring to
an object.

Let us unpack this idea a little further, deliberately opting to use terminology familiar
from work on REs, in order to emphasise what the two problems have in common (despite
the differences between the two, which will be discussed below). Let us call the scene
that the algorithm aims to describe the farget scene. Given a certain scene size and domain
assumptions provided to our participants (i.e., what colours and shapes are permitted), the
algorithm can compute how many possible scenes of this size there are. For example (as
shown in Figure 6.8), if the target scene (N = 4) has two blue squares and two blue circles,
then possible “distractor” scenes include a scene with 4 blue squares, a scene with 4 red
squares, and so on. Generation algorithms operate by accumulating QEs that are true of
the target scene but false of at least one distractor. For instance, if one says “all objects are
blue”, then this is true of the target scene but it will “remove" many other scenes, including
the scene consisting of 4 red squares, for instance. The algorithm repeats this step until a
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Domain Knowledge: Common Knowledge:

SHAPE: [square, circle] All(AB) = [4] & [B]1 A [4] # ¢
COLOUR: [red, blue] Most(4, B) = |[A] n [B]] > [[A] — [B]]

AllA] - [B]| >0
Generation .
Pre-processor . Realiser
Algorithm

T ] -—=—
Distractors

1
1
! <+ [l <0 @ xo @ xo All{0, B) All the objects are blue. |
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: W< W~ @ @xo squares. 1
.xl}.x(}.xﬂ.x'} o . |
I Bl @ x0®xo guaintlflec.i Description Surface Form I
1 in Logical Form 1
1 <l x0 @ x1 @ xo0
1 Bl @< @1 :
: I

Wl <@ @®xo
. Output |

Figure 6.9: The pipeline of how we generate a QD based on a given scene, consisting of
three steps: pre-processing, generating a QD in logic form, surface realisation.

stopping criterion is met. In simple situations, a reasonable stopping criterion is that all
distractor scenes have been removed, though as we shall see, this idea cannot always be
upheld. Let us see how these ideas can be made precise.

6.4.2 Generation Pipeline

As introduced in §2.1, NLG systems often use a pipeline architecture in which the content
of the generated text is determined before its linguistic form. We construct our Quantified
Description Generation (QDG) pipeline in line with this setup: the QDG algorithms
introduced in this section are responsible for determining the content of the description
(i.e., essentially a logical form), which is then turned into its linguistic form, which is a
process known as Linguistic Realisation or Surface Realisation in NLG. In addition, in order
to extract the required information from the given scenes, an extra pre-processing module
was inserted at the beginning of the pipeline.

Concretely, the generation pipeline consists of 3 components: a pre-processor, a QD
generator (which runs one of the algorithms below), and a surface realiser. As shown in
Figure 6.9, given a target scene s, with its domain knowledge K; (which records, among
other things, how many objects and how many possible properties there are, as will
be detailed later), the pre-processor calculates what kinds of distractors there are and,
constructs a set S of all possible scenes. The system then calls a generation algorithm to
construct a description D containing a set of L QEs, that is, D = {g;(v)}}-_,, where q(-) is
a quantified pattern with quantifier g (e.g., the all quantifier with two arguments can be
written All(+,-)) and v is a property tuple. If v is capable of filling the slots of a quantified
pattern g(-), we say that the pattern q(-) accepts v, and we write g(v). The generation
algorithm makes a selection from a set of quantified patterns Q, based on the common
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Quantifier Semantics Pragmatics
All(A, B) [A] C [B] [A] # @
Only(A) [A] = [O] -
Half(A, B) [[AT N [B]] = [[A] - [B]] [A] # @
Some(A, B) I[A] A [B]] > 2 [A]] > |[B]|
Some(A) [4]] > 2 o]l > 14|
Only-1(A) ATl = 1 :
More(A, B) |[[AT| > [[B]] [B] @
Fewer(A, B) |[[A]| < [[B]] [A] 7@
Equal(A, B) 1[A]| = |[B]| [A] # @
Most(A, B) ]| > |[A] - [B]) :
Half-rest(A, B, B') I[TA]| = 2[[B]| = 2|[B'T -
Minority(A, B) [TA]| > 2|[B]| -
All-Comb(O) All property combinations appear. -

Table 6.8: List of quantifiers in English used in our quantified description generation system
and their meanings.

knowledge K, (i.e., meanings of all quantifiers) defined on Q. Finally, with a set of logical
forms D, a simple template-based surface realiser is employed to map the logical form D
into actual natural language text.

This generation system requires two types of knowledge:

Domain Knowledge. This is the list of all possible attributes and their possible values,
with which the pre-processor could compute what distractors there are, and thus
construct the set S. This knowledge is stored as a set of key-value pairs. For example,
matching the current experimental setting of QTUNA4, its domain knowledge is
{SHAPE : [square, circle], COLOUR : [red, blue]}.

Common Knowledge This is a body of knowledge that corresponds to the quantified
patterns in Q. For a quantified pattern g(-), this knowledge base includes the
meaning of the quantified pattern and a set of possible property tuples that could be
assigned to v. The meaning of a quantified pattern has two parts: its semantics and
its pragmatics. For example, the semantics of All(A, B) asserts that [A]] C [B]. The
pragmatics says that [A] is not empty. Determining the semantics and pragmatics of
each English quantifier term is difficult in general, but the QTUNA corpus allowed
us to choose definitions that match majority usage in that corpus. The reason why
we distinguish between semantics and pragmatics will become clear in the following
section. Table 6.8 lists the quantifiers we considered in the current version of the
QDG algorithm. We decided to use only the most frequent quantifiers. Note that,
since we assign each quantifier a precise (i.e., non-fuzzy) meaning, which causes
quantifiers like some and a few to have exactly the same meaning, we chose the most
frequent one among the quantifiers with the same meaning. Quantifiers like few and
many, which have attracted a lot of attention from researchers, are not included in our
system since they have extremely low frequency in our corpus (that is, few appears 2
times and many 13 times).
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Input: A target scene s, a set S of all possible scenes, a set of quantified patterns Q, the
common knowledge K. defined on Q.
Output: A quantified description D of s that uses conjunctions of single or multiple g(v).
1: D= {}
2: while S # {s}, and |D| < J do

3: g(v) := Pluralise(q(v),s)

4: g(v) := FindBestQuantifiedExpression(s, S, Q, K.)
5: if g(v) = @ then

6: break

7 end if

8:

D i=DU{g(0)}
9. S:=={d eS8:q(v)is true for s'}
10: end while

Algorithm 6.1: The Greedy Algorithm for Generating Quantified Descriptions.

6.4.3 A Greedy Algorithm

As said, we view the QDG task as a task of ruling out distractor scenes. One can view
this as a search problem, namely, the problem of finding a set of QEs that removes all
(or as many as possible) distractors. This search can be performed by means of a greedy
algorithm: working iteratively, this algorithm keeps selecting (and including into the QD)
QEs that jointly rule out the largest possible number of distractor scenes.

We sketch the greedy algorithm for QDG (abbreviated as QDG-GREEDY) in Algo-
rithm 6.1. The algorithm takes a target scene s, a set S of all possible scenes with the same
domain as s (calculated by the pre-processor), a set of quantified patterns Q with their
corresponding meanings (stored in K;) as inputs, and outputs a set D of QEs in logical
form.

The algorithm initialises the description D as an empty set, then inserts QEs g(v)s
iteratively into D. During each iteration, QDG-GREEDY pluralises the g(v); by this we
mean adding a plural marker where necessary — namely whenever a property appears
multiple times in the target scene s (e.g., Some(S, R) acquires a plural marker if there is
more than one red square in the scene.

For example, suppose the QE is All(S, R) (meaning that all the squares are red) and the
target scene contains two red squares; the expression is pluralised as All((S, pI), (R, pl))
indicating that multiple squares in the target scene are red, in which, from now on, each
argument is represented as a tuple and pl stands for plural while sg stands for singu-
lar. Pluralisation serves two purposes. The first is to determine the pragmatics of 4(v),
which is then used for deciding how many distractors are left after selecting a certain QE.
For instance, the plurality of All((S, pl), (R, pl)) could rule out distractors that contain
only one red square. The second purpose is to decide the surface form of the QE in
English. The algorithm then calls the function FindBestQuantifiedExpression (line 4)
to choose the QE that rules out the most distractors from all possible QEs. Specifically,
FindBestQuantifiedExpression checks, for each possible QE q(v), whether this expres-
sion fits the target scene based on the meaning (including both semantics and pragmatics)
of q(v) defined in . If yes, it calculates the number of distractors that can be ruled out
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by only using g(v)’s semantics. We call the number of distractors that a QE g(v) rules out
in a given situation the Discriminatory Power of q(v). The FindBestQuantifiedExpression
function will return the QE with the highest discriminatory power. If none of the candidate
QE has discriminatory power, then the function returns an empty set.

To see why only the semantics, and not the pragmatics, of a QE is used for computing
discriminatory power (i.e., for deciding whether to include a given QE into the QD)
consider, by way of an example, the expression All(C, B) (i.e., All circles are blue). Its
semantics says (see Table 6.8) that the set of circles is a subset of the set of blue objects,
and its pragmatics says, among other things, that there exists at least one circle. If the
pragmatics of the expression contributes to its discriminatory power, then the algorithm
would end up adding this QE to a description even when the QE’s sole contribution is the
(pragmatic) requirement that at least one object is a circle — as will happen when other QEs,
previously added to D (e.g., All(O, B)), already ensure that the set of circles is a subset
of the set of blue objects. '’ Additionally, as listed in Table 6.8, a number of quantifiers
have the same pragmatics. So, if the pragmatics is taken into account when the algorithm
determines the discriminatory power of a QE, then some very different QEs would end up
having the same discriminatory power.

Line 5 of the algorithm checks whether the q(v) is empty or not. If yes, then the
algorithm concludes the while loop (line 6). If 4(v) is not empty, it is added to D (line 7)
and the distractor scenes are removed from S based on both semantics and pragmatics of
g(v). Line 2 of the Algorithm 6.1 talks about the Stop Criteria. Generation terminates when
all distractors are removed from S or the length of the generated description D reaches an
upper bound é. The idea of setting an upper bound comes from the observation that, in
QTUNA, descriptions were remarkably constant across domain sizes (see H4 in §6.2.3).

Note that in line 4 of this algorithm, the FindBestQuantifiedExpression is likely to
find multiple QEs that have the same discriminatory power (i.e., several “best” expres-
sions). Instead of trying to choose intelligently (and in order to increase the variation in
generated QDs), the FindBestQuantifiedExpression randomly return one of these “best”
expressions.

6.4.4 An Incremental Algorithm

We have seen that the Greedy algorithm iteratively selects that QEs that have the higher
discriminatory power. From a cognitive viewpoint, however, there could be thought
to be something slightly suspeccious about an algorithm that needs to perform such a
complicated calculation: alter all, FindBestQuantifiedExpression has to check, for each
quantifier pattern and all its possible values, how many scenes would be ruled if these
were selected. Moreover, when we examined the QTuNA dataset more closely, we found
that some quantifiers patterns are far more frequent than others, and some choices of
properties to fill a given pattern are far more frequent than others. For example, akin to
what H5 (in §6.2.3) indicates, we found that if all fits in any of the properties in a scene,
subjects tend to use all to construct a QE. Building on these observations, a natural idea
would be to compose an ordered sequence of quantifiers, and an ordered sequence of
fillers (i.e., property tuples), reflecting the different degrees of “popularity” of different
quantifiers and different fillers. The algorithm can then make use of this ordered sequence

If plurality is also treated as a part of pragmatics, then the pragmatics of the QE All((C, pl), (B, pl)) says that
there are at least two circles. This would exacerbate the above effect.
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Input: A target scene s, a set S of all possible scenes, a set of quantified patterns Q, the
common knowledge K, defined on Q, a Quantifier Preference Order defined on O, a
set of all possible property tuples in the domain V, and a property preference order
defined on V.

Output: A quantified description D of s that uses conjunctions of single or multiple g(v).

1. D= {}
2: for each g in Q (in order of the Quantifier Preference Order) do

3: for each v in V such that g accepts v (in order of the Property Preference Order) do
4; g(v) := Pluralise(q(v),s)

53 if q(v) is true for s, and D }~ g(v) then

6: D:=DU{q(v)}

7 S :={s" € §:q(v) is true for s’}

8: end if

9: end for

10:  Until S = {s}or |D| >4

11: end for

Algorithm 6.2: The Incremental Algorithm for Generating Quantified Descriptions

to determine in what order to consider the different types of expressions for inclusion in the
generated description. Analogous to the “preference orders” of attributes (like colour, size,
etc.) that are employed in the generation of REs (see 2.2.1), one would ultimately like to
understand the reasons behind these preference orders, for instance in terms of codability
(cf., van Deemter (2016, chapter 3) for discussion). Lacking such a deep understanding for
the moment, we considered the following two types of sequences:

Quantifier Sequence. Inspired by the fact that some quantifiers occur more frequently
than other quantifiers (as shown in Figure 6.1), QEs that use frequent quantifiers
like all, half or most should have high priority (i.e., they should occur early in the
Preference Order).

Property Sequence. Analysis of QTUNA (see H; in Study 2) suggested that for patterns of
the form All(A, B), the first argument, A, is more often a SHAPE property, whereas B
is more often a COLOUR. For example, the algorithm should prefer the property tuple
(S,R) than (R, S).

Further details of both the Quantifier Sequence and the Property Sequence are given below.
The algorithm incrementally generates the description by considering possible quantifiers
and fillers one by one, starting at the top of the sequence, working its way from the top of
the preference order downwards. Given the analogy with the incremental algorithm for
REG (Dale & Reiter, 1995), we call the algorithm the incremental algorithm (abbreviated as
QDG-14). Likewise, we will speak of the Quantifier Preference Order (instead of quantifier
sequence) and the Property Preference Order (instead of Property Sequence).

Note that in addition to the inputs of the QDG-GREEDY algorithm, as shown in
Algorithm 6.2, QDG-14 requires two pre-defined preference orders defined above. Given
these inputs, the QGp-14 algorithm will go through all the quantified patterns Q in order
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of the quantifier preference order. In each iteration, for the selected quantified pattern
g(-), epG-1a will test all possible property tuples accepted by that pattern in the order of
property preference order. Recall that the information which g(-) accepts which property
tuple can be found in K;. The algorithm then calls the Pluralise function on the QE,
which is the same manipulation done by QDG-GREEDY.

Line 5 of Algorithm 6.2 involves some important deviations from Dale and Reiter’s
algorithms. Here, our algorithm first tests whether g(v) is correct as a QE for s; the test is
performed by using both its semantics and pragmatics. Subsequently, the algorithm tests
whether g(v) does not follow from the description D (i.e., D |~ g(v)) ', ensuring that g(v)
rules out one or more further scenes (i.e., it is not logically superfluous). Crucially, the
latter test uses only the semantics of 4(v), not the pragmatics. In the case of the present
algorithm, the different roles of semantic and pragmatic information (in this case: the
information provided by the plural form) is possibly even more striking than in the case of
the Greedy algorithm. For example, suppose we want to generate a QD for a scene that
consists of 2 blue squares and 2 blue circles, and the quantifier all has the highest priority
in the quantifier preference order. In its first iteration, the algorithm produces a QE like
“all objects are blue”. In the second iteration, if the pragmatics is used for validation, the
algorithm could add “all circles are blue”, whose semantics contribute no new information
at all, but whose pragmatics (i.e., the claim that there are at least two circles) rules out all
those distractor scenes that contain less than two circles (which would cause it to pass the
second test of line 5). The resulting description, “All objects are blue and all circles are blue
and ..” (which can be made logically complete by adding “... and there are squares”) would
sound strange because, intuitively, the second clause is logically redundant given the first.
12

Once the above two conditions have been validated, 4(v) is appended at the end of the
description and the scenes for which g(v) is not true are removed from S. Both seman-
tics and pragmatics are used for removing such distractors. The generation terminates
according to the same criteria as the QDG-GREEDY algorithm.

As for the design of preference orders, we started with testing the following settings,
once again based on analysis of the corpus. The quantifier preference order is a linear
preference order, namely:

All(-,-) > Everything(-) = Only(-) > Half(-,-) > Half-rest(-,-,-) > Equal(-,-)
> Most(-,-) > More(-,-) > Minority(:,-) > Fewer(-,-) > Some(-,-) > Some(-)
> Only-1(-).

The second-order quantifier All-comb is only applicable to a small number of scenes
but is used very frequently for those scenes. Therefore, although it has a relatively low
overall frequency across the whole corpus, we still assign it a high priority. '3 The
property preference order was designed by following some constraints, for example, SHAPE

Logical consequence is implemented by calculating the set of scenes that are removed by a given expression (or
set of expressions). Thus, D = q(v) means that the set of distractor scenes removed by (v) is a subset of the set
of distractor scenes removed by D.

These observations might have applications in other areas of language use as well, for instance, Gricean
conversational implicatures (Grice, 1975). Imagine the Gricean scenario in which an academic referent “praises"
one of his students for having nice handwriting (implying that the student is academically inept and should not
be hired). Our observations suggest that it would be odd for this academic to make the same utterance as part of
a conversation in which the student’s handwriting had already been favourably commented upon.

A -~ B means that A follows B in the preference order.
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properties have higher priorities in the first argument places and compounded properties
(e.g., RS and BC) are more preferred than singular properties (e.g., R, C, and B).

However, when we ran the algorithm, we found that some quantified patterns that
have low preference are never chosen by the algorithm, causing the generated descriptions
to only use a very limited set of patterns. For example, the pattern All(-,-) has a higher
preference than the pattern Only(-), and consequently the latter is never chosen, because
its meaning is covered by the former. For example, the meaning of “there are only squares” is
covered by that of “all objects are squares”. To increase variety, we introduced a probability
6, with which the QDG-1A performs a one-off re-ordering move; for the work reported
in this study, we set 6 to 0.1. Re-ordering was not performed across the entire preference
order, but only within certain groups of quantifiers that have high meaning overlap with
each other. To be precise, we used the following partitioning of the Preference Order of
quantifiers (each {-} represents a partition):

All-Comb >

{All(+,-) > Everything(-) > Only(-)} >

{Half(-, -) > Half-rest(-,-,-) > Equal(-,-)} >

{Most(-,-) > More(-,-) > Minority(-,-) > Fewer(-,-)} >
{Some(-,-) > Some(-)} > Only-1(-).

Once the algorithm has decided to conduct a one-off move, the order of quantifiers within
that part are re-ordered at random.

6.4.5 Surface Realisation

Surface Realisation is typically the last stage in an NLG pipeline, where abstract structures
are turned into concrete sentences. In the present case, Surface Realisation turns the logical
forms produced by the Greedy and Incremental algorithms into actual stretches of English
text. Though this is not the stage of the pipeline on which our computational model
focuses, it cannot be omitted because, without Surface Realisation, it would be much more
difficult for human judges to evaluate the output of the algorithm: people are used to
interpreting and judging text, not abstract representations.

Our system uses a simple template-based surface realiser (see e.g. (van Deemter et al.,
2005) for comparison with other types of Linguistic Realisation). For each quantified
pattern, there is a specific template. For example, for All(-,-), we have a template:

(81)  All of (ARGUMENT-1) (COPULA) (ARGUMENT-2)

where (COPULA) will be realised into is or are depending on the plurality of the first
argument of the generated QE that uses this pattern. When filling these slots with chosen
properties, some simple syntactic and morphological operations are employed. For example,
if a COLOUR property takes the first place of a quantified pattern, a noun is appended to
package it into a noun phrase (i.e., red — red object). If a property has a plural suffix,
the surface form of the property is mapped into its plural form. A number of further
constraints, specific to particular quantified patterns, were also encoded in the realiser.
The present work has focused on the way in which speakers use a variety of quantifiers,
which is why Linguistic Realisation of sentences and texts was kept simple and could
be improved in many ways. One significant limitation of the way in which the abstract
patterns generated by the algorithms of the previous sections are put into words is that
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our wordings do not use anaphora yet. This is despite the occurrence of many different
types of anaphoric expressions in our corpus, for example as when a QE is followed by
“Half of them are red”. Anaphoric patterns were particularly prevalent in QEs with 3-ary
quantifiers, for example as in “Half of the objects are red, the other half are blue”. Using
anaphora judiciously without creating unwanted ambiguities is quite doable in general,
but the topic is not without its problems (e.g., Kamp and Reyle, 1993, Chapter 4). We
expect that, by addressing these issues, future Linguistic Realisation modules will be able
to produce even more human-like descriptions of the scenes on which we are focusing.

6.4.6 Evaluating the Generated Quantified Descriptions

Although our algorithms were informed by extensive elicitation experiments, we wanted
to gain additional insights into the quality of generated descriptions. We were curious how
“human-like” these descriptions are, and how correct and informative.

Previous studies on evaluating the human-likeness of a computational language pro-
duction model tend to use corpus-based evaluation: the model generates outputs (e.g.,
sentences or logical forms) and these outputs are compared with a corpus using a simi-
larity measure (e.g., van Deemter, Gatt, Sluis, et al. (2012)), such as DICE (Dice, 1945) or
BLEU (Papineni et al., 2002). However, there are two insurmountable problems with using
such a methodology in the present situation.

First, the quality of a QD cannot easily be measured automatically. Consider the QE
Few (O, S) once again. Suppose the target scene is a situation in which 5 out of 20 objects
are squares; then is it correct to say that Few (O, S), or does this underestimate the number
of squares? And if Few(O, S) is all that is said about the proportion of objects are squares,
is this sufficiently informative or not? We are not aware of any existing metric or algorithm
that would give us reliable answers to these questions. Therefore, we decided not to use
corpus-based evaluation, but to conduct two evaluation studies: a human judgement study
(i.e., asking expert human judges to rate the generated QDs) and a scene reconstruction
study (i.e., asking human subjects to reconstruct the input scenes given the generated QDs).

Second, since we designed our algorithms based on the QTUNA corpus, it would be
insufficient to evaluate them on the same corpus again, since this would fail to distinguish
between training and test data. (Borrowing terminology from the machine learning
community, it would risk letting the model over-fit the corpus.) To avoid this problem, we
selected our experimental materials not only from our QTUNA corpus but also from scenes
that do not appear in QTUNA.

Concretely, we divided the evaluation experiments into experiment A and experiment
B. For experiment A, we randomly selected 3 or 4 scenes from each of the 3 sub-corpora
of QTUNA to construct a set of, in total, 10 scenes, each of which was paired with 3
descriptions: one by QDG-14A, one by QDG-GREEDY, and one selected at random from
our corpus. A number of example scenes, paired with their descriptions, are listed in
Table 6.9. For experiment B, we focused on three new domain sizes namely N = 6,
N =10, and N = 16. For each of these, we sampled 6 scenes, each of which was paired
with 2 descriptions: one by QDG-GREEDY and one by QDG-1a. Finally, we have 66
scene-description pairs ready to be evaluated.

To assess the quality of each description, we used two different methods: a method
based on quality judgements by human experts and a task-based method in which readers
were asked to reconstruct the scenes that are described.
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Scene | Model | Description
B2 | Human All the objects are squares and half of them is blue.
RS:2 | QDG-1A Every object is square. There are equally many blue squares and
BC:0 red squares.
RC:0 | oDpG-GREEDY | Half of the objects are blue squares, the rest are red squares.
Human Two objects are red squares. Two objects are blue squares and
BS:2 the remainder is blue.
RS2 | gpg-1a Every circle is blue. Half of the squares are blue. More than half
Egg of the objects are blue circles.
’ QDG-GREEDY | Half of the squares are red, the rest are blue. Most of the objects
are blue circles.
Human There is a mixture of squares and circles. Most of them are blue.
BS:9 Some of them are red.
RS2 | gpg-1a All possible objects are shown. A minority of the objects are red
Eg? squares. Less than half of the objects are blue circles. Less than

half of the objects are blue squares. Less than half of the objects
are circles.
QDG-GREEDY | All possible objects are shown. A minority of the objects are red
squares. Less than half of the objects are blue circles. Less than
half of the objects are blue squares. Less than half of the objects
are circles.

Table 6.9: Examples of quantified descriptions produced by humans, by @pG-14, and by
QDG-GREEDY. The numbers in the Scene column represent the number of objects of each
type (e.g., the first scene consists of two blue squares and two red squares).

Human Judgement

Settings. We recruited 4 annotators, who were academics from Utrecht University, and
none of whom had been involved in our research. Two were young lecturing staff in
computational linguistics and two were senior lecturing staff in computational logic and
formal argumentation. All the 66 scene-description pairs (from both experiments A and
B) were put together and randomly allocated to our four judges. Each of them judged 33
scene-description pairs. Thus, each scene-description pair was judged by two judges and
was judged from three aspects: correctness, completeness, and naturalness.

However, the correctness and the completeness of a description is not an “all or
nothing” affair, especially when larger domains are involved, which frequently give rise to
descriptions that contain vague quantifiers. The same is true for the perceived naturalness
of the description. As is often done in NLG (Gatt & Krahmer, 2018), we used a gradable
scale. Judges were asked three Likert-scaled questions in each case:

1. Naturalness: On a scale of 1-5, how likely do you think it might be that this description was
uttered by a human? [1=very unlikely, 5=very likely];

2. Informativity: On a scale of 1-5, do you believe the description is as informative as it can be
expected to be? [1=description is not even nearly informative enough, 5=description

gives as much information as is possible];
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Model Naturalness Informativity ~Correctness
Human 3.45 4.05 4.6
E.A oDG-1A 2.85 3.95 455
QDG-GREEDY 3.45 3.8 4.8
EB QDG-IA 3.7 3.8 4.83
’ QDG-GREEDY 3.46 4.2 4.83

Table 6.10: Average scores for each algorithm and for human-produced descriptions, by
naturalness, informativity, and correctness as annotated by our four human judges. “E.A”
stands for “Experiment A”.

3. Correctness: On a scale of 1-5, how correct do you consider this description to be? [1=the
description is not ad all correct, 5=everything the description says is correct].

Note that when judges make judgements the words naturalness, informativity and correct-
ness were invisible. In addition, our instructions said “Please note that we are mainly interested
in the logic of how people describe the scene, and less in the details of the wording, so please disregard
minor syntax errors and typos”. Because in experiment A, the first question was asked about
a human-produced description as well as two algorithm-generated descriptions. This setup
allowed us to perform what is essentially a Turing Test. The other two questions offered
invaluable formative evaluation.

On the basis of the nature of the task and the algorithms of QD production, we
formulated a number of evaluation hypotheses:

1. Humans perform better at naturalness than QDG-1A and QDG-GREEDY (EH1);

2. Both algorithms perform better at informativity and correctness than humans, because
both of them were explicitly designed to optimise informativity and correctness

(EH2);

3. @DG-1A performs better at naturalness than QDG-GREEDY (£H3). We reasoned that,
in REG, the incremental algorithm offered greater human-likeness than the greedy
algorithm (Dale & Reiter, 1995; van Deemter, Gatt, Sluis, et al., 2012), so why should
things be different this time?

Results. Table 6.10 shows the scores from the judges. Both algorithms scored well over 3
in all except one cell, confirming our impression that the descriptions tended to be of very
respectable quality.

As for our evaluation hypotheses, our first evaluation hypothesis, £H;, was rejected: in
terms of naturalness, QDG-GREEDY performed well above expectation, gaining the exact
same score as the human speakers. QDG-1A had a slightly lower score, but this did not
amount to a significant difference (as tested by a paired t-test).

Though “no difference” results always need to be approached with caution, the rejection
of £H1 might be interpreted as an NLG algorithm passing a kind of Turing test (focusing on
a limited type of language use, of course), since it suggests that the perceived quality of the
algorithm was indistinguishable from human speakers. In an effort to understand the low
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naturalness performance of QDG-1a, we had a closer look at the cases where oDG-14 had
particularly low scores. We found that these almost always contained vague quantifiers (e.g.,
few, most), where the semantic and pragmatic definitions of which our algorithms made use
were especially tentative. Moreover, vague quantifiers were used disproportionally often in
the scenes of Experiment A, and far less in the scenes of Experiment B; accordingly, the
QDG-IA scored much better on naturalness in Experiment B. We surmise that a possible
reason for the low naturalness performance of QDG-14 is that the semantics of the vague
quantifiers in K, is not as accurate as it could have been. For instance, the currently-used
semantics of most is the same as that of more than half, which is a precise quantifier. The
effect of using more accurate, empirically based, definitions of vague quantifiers, which
requires further comprehension experiments, will be investigated in our further work.

Our analysis of the second evaluation hypothesis, £H;, shows some of the hidden
difficulties of the description task that our algorithms solve. Human speakers, and both
of our algorithms, all performed similarly well in terms of informativity and correctness.
To understand why, we decided to separately calculate the average informativity score for
those descriptions in experiment B that were logically complete (i.e., the algorithm stopped
when S = {s}). For this reduced set of descriptions, the average scores for QDG-14 and
QDG-GREEDY were a mere 3.88 and 4.1, instead of the score that one might expect, namely
5. One possible explanation is that our algorithms judged the logical correctness and
completeness of these descriptions by taking both their semantics and their pragmatics
into account (as discussed in §6.4.3 and §6.4.4), which is something our judges may have
disagreed with. Alternatively, judges may sometimes have had a lapse of concentration.

The last evaluation hypothesis, £H3, was also rejected, as there was no significant
difference between the naturalness performance of QDG-1A and QDG-GREEDY. This may
be because the preference order that we proposed for quantified patterns has much higher
complexity than that of properties (or attributes) in the task of REG. In particular, the
number of quantifiers is considerable, and, because of our “one-off" re-ordering move, our
preference order of quantifiers was not linear. It is possible that a different preference
order would have led to better results for QDG-14, but it seems equally possible that the
idea of using a preference order to determine the choice of quantifier patterns — on which
the Incremental Algorithm is based — is simply not on the right track, and that a simpler
“greedy" approach leads to results that are equally good.

Scene Reconstruction

Settings. We recruited 20 undergraduate students from Utrecht University 13 of whom
are majored in Artificial Intelligence; the other 7 study a variety of other subjects. The
descriptions in experiment A were randomly allocated to all participants. Each description
was used for reconstructing the paired scene four times (i.e., by four participants). The
descriptions in experiment B were allocated in the same way, except that each pair was
assigned twice instead of four times. Each participant reconstructed a total of 8 or 9 scenes.

Given a description and the domain size of the paired scene, we demanded each
participant to write down the number of objects (i.e., the number of BS, RS, BC, and RC) in
the scene by asking “please tell us about a scene that could be described by the description”. We
chose to ask participants to write numbers instead of drawing scenes, in order to encourage
them to disregard the location of each object in the scene. Participants had not seen any of
the QTUNA scenes before, which makes the reconstruction task become tough. Therefore,
before starting, we provided each participant with two examples to show them how the
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\ Model \ N=4 N=9 N=20 \ All

Human 8.33 6.25 15 9.86
Experiment A | QDG-1A 0 11.81 18.33 | 10.05
QDG-GREEDY | 2.08 8.33 15 8.47

\ Model \ N=6 N=10 N=16 \ All

Experiment B QDG-IA 1.39 10 10.42 7.27
P QDG-GREEDY | 1.39 833 781 | 584

Table 6.11: Average SWAP(%) for each algorithm and for human-produced descriptions. N
represents the domain size.

reconstructed scenes might look like. In addition, considering that some descriptions have
multiple possible corresponding scenes, we told participants: “In those cases, please choose an
answer (number) that you consider to be consistent with the description”.

Given the above settings and the hypotheses of the human judgement study, we
formulated two evaluation hypotheses. We hypothesised that

1. Reconstructions based on descriptions generated by @DG-1A and QDG-GREEDY are
more similar to the input scenes than are those produced by humans (£H4). We
expected this because these algorithms, especially the QDG-GREEDY are designed
to be as logically complete as possible. Since the more complete the generated
descriptions are, the easier for them to be reconstructed.

2. Secondly, we hypothesized that (2) descriptions produced by oDG-1A let readers
reconstruct scenes more accurately than QDG-GREEDY (EHs5).

Similarity between reconstructions. A key part of our analysis is the metric that we
used to measure the similarity between a reference scene and a reconstructed scene. Given
a reference scene and a reconstructed scene, we care about how many “swaps” are needed
to convert one into the other. Concretely, we propose the SWAP metric, which takes the
absolute differences between the cardinalities of each of the four types of object in the
reference scene and in the reconstructed scene, takes the sum of these, then divides that
sum by 2 times the domain size.

For instance, suppose the reference scene is: {BS : 2,RS : 1,BC : 0,RC : 1}, where
each number represents the cardinality of the relevant type of object. Suppose one of the
reconstructed scenes is: {BS:2,RS:1,BC:1,RC : 0}. Then

2-2|+[1-1/+[0-1]+|1—-0

SWAP = A

1/4. (6.1)

The lower the SWAP score, the better the reconstruction, with 0 as a minimum and 1 as a
maximum.

Results. Table 6.11 reports the SWAP score for both experiments A and B. We analyse
these results, focusing on our hypotheses first. The SWAP scores in experiment A show
that hypothesis £, is only confirmed for the smallest domain size (N = 4) while for
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larger domain sizes, QDG-IA generates less reconstructable descriptions than our human
speakers. When domain size is small, precise (i..e, non-vague) quantifiers tend to be used
(c.f., §6.2). Consequently, our algorithms always generate logically complete descriptions,
so they enjoy low SWAP scores (i.e., high re-constructability). Conversely, when domain
size becomes larger, then logical completeness becomes less and less achievable (cf., §6.2),
and a larger number of vague quantifiers are used. Consequently, the SWAP scores go
up, so the re-constructability of descriptions produced by human speakers and algorithms
goes down.

As for our hypothesis £Hs, by looking at results from both experiments A and B, the
hypothesis is rejected; in fact, the data go in the opposite direction, since descriptions
generated by the QDG-GREEDY have better re-constructability than @DpG-1A. One possible
explanation is that QDG-1A may have generated less complete quantified descriptions than
QDG-GREEDY (since QDG-GREEDY always looks at QEs that have the highest discrim-
inatory power). In other words, when readers were simply reading these descriptions
together with paired scenes (i.e., in the human judgment study), this difference may not
have been noticed (note that QDG-1A had a similar level of informativity as QDG-GREEDY),
the difference may have been “enlarged” in the reconstruction experiments.

Besides, from the results in Table 6.11, we also found that when focusing on hard
cases (i.e., Experiment A) re-contructability decreases with the increase of domain size. In
contrast, when we use randomly selected scenes (i.e., Experiment B), although differences
between small and large domains exist, it appears that if the domain size is large enough,
then no significant difference exists (i.e., there is no significant difference between the
SWAP score when N = 9 and when N = 20).

6.4.7 Initial Comparison Between two Evaluation Protocols

Considering the results of these two evaluation studies, we made two post-hoc observations.
On the one hand, although algorithms were designed to produce QDs that are logically
complete, in the human judgment study, we observed that the algorithm-produced QDs did
not receive a higher informativity score than human-produced ones. A similar phenomenon
occurs in the large domain reconstruction study. Machine-generated descriptions had better
re-constructability in merely the small domain (i.e., N = 4) than human-generated ones,
where vague quantifiers are rarely used and received worse or equal re-constructability
scores in larger domains (i.e., N = 9 and N = 20) than human-generated ones. This said,
logically complete descriptions not only, from the speakers’ perspective, are less often
produced than logically incomplete ones but also, from the readers’ perspective, contribute
nothing to help readers to comprehend its meaning.

On the other hand, the greedy algorithm can generate descriptions that have slightly
better re-constructability scores than the incremental algorithm, but they were not judged
to be significantly more informative. This inconsistency might result from the differences
between these two kinds of evaluation protocols. Explaining the reason behind this requires
larger-scale experiments that assess such differences.

6.4.8 Discussion

In this study, we proposed two generation algorithms that aim to mimic the language
production behaviour recorded in the corpus, understood as what is known in the com-
putational modelling community as a product model, that is, a model that focuses on the
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relation between inputs and outputs without any claims about the manner in which this is
done. We then evaluated these algorithms, looking at scenes of a variety of sizes, including
scenes that contained numbers of objects not seen in the corpus. Our evaluations suggest
that our algorithms produce descriptions that are both natural (i.e., human-like) and useful.

Computational models of language use can offer a wealth of insight into the choices
that human speakers and writers make when they use language. Let us take stock to see
what lessons may be drawn from our computational modelling exercise. Additionally,
since we designed our algorithms in accordance with the collected English QDs and have
merely evaluated our algorithms in English, we hereby also discuss potential issues of
applying our algorithms to model Mandarin QDs.

Quantified Descriptions and Referring Expressions

Computational models of the production of REs have been studied widely (Dale & Reiter,
1995; Dale & Viethen, 2009; Krahmer & van Deemter, 2012; van Deemter, Gatt, Sluis, et al.,
2012; van Gompel et al., 2019). They aim to mimic how human speakers use RE to single
out a referent for a hearer. For example, given a scene such as Figure 2.8(a), a participant
could say “the large chair", “the large front facing sofa", “the front facing sofa" or “the green
chair”. Each of these expressions lets readers identify the target reference from the context.

Quantification is not reference, of course. Nonetheless, it is illuminating to compare
the two phenomena and, in fact, the algorithmic approach we have chosen to model
quantification resembles some algorithms originally discussed in Dale and Reiter (1995),
where an RE is constructed by accumulating properties (e.g., COLOR, SIZE) one by one, each
of which is thought to “remove” from consideration a set of “distractor objects”, that is,
potential referents that differ from the target referent in one or more respects. We have

Y/7i

emphasised this similarity by using terms familiar from REG (e.g., “target”, “removing

VZA7i

distractors”, “preference order” and so on). In a nutshell,

¢ In the generation of both REs and QDs, the task can be viewed as a step-wise addition
of descriptive information that narrows down an initial set of possibilities (a set of
possible referents in one case, and a set of scenes in the other case) to a small set —
typically a singleton set.

¢ In both situations, the “narrowing down” metaphor gives rise to a range of possible
algorithms. In each case, for instance, a “greedy” algorithm might proceed by always
adding the information that most effectively reduces the size of the current set of
possibilities. In other words, the notion of discriminatory power, which is crucial for
models of reference, looms large in the modelling of quantification as well.

* In both cases, the effect of adding information must be understood in the context
of the Common Ground of the speaker and hearer. When the speaker is unsure as
to what the hearer knows (e.g., what the initial set of possibilities is), for example,
the question can arise of whether it is practically feasible — in a reasonable time, and
using a description that is not too lengthy or complicated — to reduce the initial set of
possibilities to a singleton set. In the realm of reference, for example, Kutlak et al.
(2016) model a situation in which the aim of a RE is not to uniquely pick out one
single referent. Below we will discuss similar situations in the realm of quantification.

These similarities should not close our eyes to the important differences that exist
between the two tasks. Firstly, in the most often studied versions of the reference task,
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distractors are concrete objects, which are observed by the speaker and the hearer; in
our quantification task, the distractors are a set of possible scenes, only one of which is
observable, namely the target scene. This makes our quantification task much more abstract
than most versions of the reference task. In our generation system, this is reflected by
the stage in which the pre-processor computes the set S of all possible scenes from the
properties that are given.

Secondly, in the reference task, properties (such as red) take the place that QEs have
in the quantification task. QEs are much more complicated than properties, hence the
distinction between choosing a pattern p(-) (line 2 of Algorithm 6.2) and choosing a value
v to fill the pattern (line 3).

Thirdly, the algorithms proposed in the present study have had to find a way to take
both the semantics and pragmatics of quantifier patterns into account. In a nutshell,
semantics is about literal meaning whereas pragmatics is about other ways in which
language use can convey information. That said, the distinction between semantics and
pragmatics is much debated within Theoretical Linguistics, and the precise boundary
between the two is notoriously difficult to draw (Levinson, 1983). The way in which this
distinction works in relation to reference is relatively well understood, but the distinction
has proved to be much harder to deal with in connection with quantification, because if
semantic information is lumped together with pragmatic information, our algorithms tend
to generate descriptions that are unnecessarily unwieldy (see our explanation in §6.4.3).
Whether the solution embodied in our algorithms generalises to other types of pragmatic
information is a question for further research.

Representing the meanings of quantifiers

Our generation algorithms embody specific assumptions concerning the meaning of each
quantifier. For example, when an algorithm adds the QEs “All circles are blue” to a
description, we assume that “All A are B" means [A] C [B] A [A] # ©@; consequently, our
algorithms remove from the set S all those scenes for which this logical conjunction does not
hold true. Although we have done our best to choose representations of quantifier meaning
that are consistent with both the Linguistics literature and the way in which quantifiers
are used in our corpus, we cannot claim yet to have found the optimal representation in
each case. For example, various authors (Moxey & Sanford, 1993; Nouwen, 2010) have
pointed out that human quantifier use is guided not only by raw numbers of objects alone
but by (speakers’ and) hearers’ expectation about the number as well; for example, a child
in The Netherlands who has seen 10 animals on a given day may say she has seen many
elephants (if that’s what they were) but a few cows (if that’s what they were). Although the
geometrical scenes on which we have focused in this study has sought to minimise these
issues, there is surely a lot of progress to be made; in fact, it is perhaps remarkable that
our algorithms work as well as our evaluation suggests they do.

A class of quantifiers where this disclaimer is particularly opportune are “vague"
quantifiers, that is, quantifiers where there can exist borderline cases in which it is debatable
whether or not the quantifier applies; cases in point are quantifiers like many, few, all except
a few, and so on. In all these cases, the set-up of our generation algorithms forces us to
use a crisp cut-off point — deciding, for example, that Many A are B is true if less than
20% of A are B, and false otherwise. Although this contradicts received wisdom about the
meaning of these quantifiers, our evaluation suggests that, for the type of generation task
at hand, our algorithms “get away" with this simplification. While this outcome gives rise
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to interesting questions — Could an NLG algorithm that models vague expressions as if
they were crisp pass the Turing test? — we believe that it would be interesting to experiment
with alternative assumptions that do more justice to what is known about these quantifiers.

For instance, one could represent the meaning of quantifiers probabilistically (Moxey
& Sanford, 1993), or using a version of Fuzzy Logic. In both cases, the representations in
question would tell us to what extent a given QE is applicable in a given situation: let’s
call this its degree of applicability. Such a move could even benefit quantifiers that linguists
generally consider to be crisp. For example, Degen and Tanenhaus (2011) and van Tiel
(2014) pointed out that, when reading QEs like Some of A are B, readers’ acceptability is
lower than 1 (though often higher than 0) if the target set is either too small or too large. A
similar approach is taken in the Bayesian quantifier models of (Frank & Goodman, 2012),
Franke (2014) and Qing (2014, Chapter 4), which are learned from experimental data. The
resulting non-crisp meaning representations could be fed into our generation algorithms in
a number of ways. For example, in the Incremental Algorithm, the choice of the next QD
to be included in the description (which was done in lines 2 and 3 of Algorithm 6.2) could
be made on the basis of the degree of applicability of the expression in combination with
its preference degree. It would be interesting to see whether, as a result of this move, the
quality of the resulting QDs (as measured by evaluation studies such as the one reported
in the current study) will improve. Since the present work focuses on the production of a
wide range of quantifiers rather than on sophisticated models for specific quantifiers, this
exploration was left for future research.

Generating Mandarin Quantified Descriptions

We believe the QDG framework we proposed is universal across different languages.
Nonetheless, the are still a number of issues that need to be aware of when building
Mandarin QDG systems. First, in Mandarin, the plurality can be expressed either explicitly
or implicitly.

82 a. KA HHLETHTHR M EEHE -
tapian zhong you héngsefangkuai hé lanseyudnquan
There are red squares and blue circles.
b. EF HHE —LAE FRA & EAFEE .
tapian zhong ydu yixié héngsefangkuai hé yixié lanseyudnquan
There are some red squares and some blue circles.

Description (82-a) and (82-b) show examples for the two situations, respectively, and note
that, in MQTUNA, the implicit version is more frequent. This requires that when the
algorithm calls the Pluralise function, it needs to consider the surface form of the current
QE in advance. If the final QE is in the form analogous to the description (82-a), then the
algorithm should not call the Pluralise function.

Second, given the conclusion that Mandarin speakers use more vague quantifiers
than English speakers, a Mandarin QDG algorithm needs to be powerful on handling
vagueness. To this end, we have discussed the potential ways to include non-crisp meaning
representations above. Additionally, this also matters the construction of the quantifier
preference order of the incremental algorithm. As we can see by comparing the top-10
quantifiers in English (Table 6.1) and in Mandarin (Table 6.5), the list of frequent quantifiers
in Mandarin is very different from that in English, and there are more vague quantifiers.
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Therefore, to build a Mandarin QDG system, we need to adopt the quantifier preference
order accordingly: moving some vague quantifiers upward and, meanwhile, moving some
crisp quantifiers downward.

Third, in the §6.3, we also found that Mandarin QDs in MQTUNA are generally longer
than those in QTUNA, especially when domain size is large. To reproduce such a character-
istic, we probably need to adopt the stop criteria. Both QDG-GREEDY and QDG-1A stop
producing QEs with respect to the parameter 8. When building Mandarin QDG system:s,
we may need to increase the value of 6 to produce longer QDs.

Last, Mandarin QDs also pose challenges for surface realisations (more issues of
realisation in Mandarin can be found in Chapter 7). This is because: 1) most QEs can
be expressed in three different ways (see the example (76)); (2) in addition to handling
anaphora, the realiser for Mandarin QDs also need to handle A-drop; (3) the realiser needs
to decide whether to express plurality explicitly or implicitly. As aforesaid, this decision is
made in accordance with whether the algorithm calls the Pluralise function or not.

6.5 Summary

In this chapter, we investigated how English and Mandarin speakers use quantifiers if
they are free to describe a visual scene in whatever way they want and its computational
models.

We decided to look at English first. We conducted the QTUNA experiment where
participants were asked to describe a series of visual scenes using any quantifier they want,
using as many sentences as they choose, and using any sentence pattern they like. To see
how the quantifier use changes with respect to the domain size (i.e., the number of objects
in the scene), during the experiment, we test three different domain sizes (i.e., 4, 9, and 20)
The experiment yielded the QTUNA corpus. By analysing the corpus, we found that all
the completeness, the correctness, and the frequency of crisp quantifiers are reduced with
respect to the rise of domain size. We also found that there is no clear correlation between
the length of QDs.

Subsequently, we conducted the same experiments on Mandarin speakers, which yields
the MoTUNA corpus. All the conclusions we made in the QTUNA experiment were still
held in MoTUNA. To assess the coolness hypothesis, we compare the completeness, the
length, and the use of vague quantifiers of QDs in MQTUNA and in QTUuNA. We found that
Mandarin QDs are less complete and use more vague quantifiers than English QDs which
are in line with the fact that Mandarin is “Cooler” than English. Nevertheless, inconsistent
with the Coolness hypothesis, QDs in MQTUNA are generally longer than those in QTUNA.

Building our findings in the elicitation experiments, we built two algorithmic production
models that aim at mimicking the language production behaviours of human beings,
namely qdg-greedy and qdg-ia. We then evaluated these algorithms on producing English
QD in two alternative ways: human judgement (i.e., asking readers to judge whether a
QD is natural or not) and re-construction (asking readers to reconstruct the scene given a
QD). The evaluation results suggested our algorithms produce descriptions that are both
natural and useful. At length, we listed some issues that need to be aware when applying
our algorithms to Mandarin QDG.
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CHAPTER : I

Surface Realisation

Abstract. We aim at realising noun phrases in Mandarin. In this chapter, we report three
studies about Mandarin linguistic realisation. In the first study, we introduce simpleNLG-zH,
a realisation engine for Mandarin that follows the software design paradigm of simpleNLG. We
explain the core grammar (morphology and syntax) and the lexicon of simpleNLG-zH, which is
very different from English and other languages for which simpleNLG engines have been built.
We, then, evaluate the coverage and correctness of simpleNLG. In the second study, we zoom
in on one realisation module, namely, classifier selection. In addition to the dictionary-based
classifier selector in simpleNLG-zH, we explore several data-driven alternatives. In the last
study, we conduct a human experiment to assess how hard the task of classifier selection is for
human beings.

The publications related to this chapter are:

1. Chen, G., van Deemter, K., & Lin, C. (2018). SimpleNLG-ZH: A linguistic realisation
engine for Mandarin. Proceedings of the 11th International Conference on Natural Language
Generation, 57-66. https://doi.org/10.18653 /v1/W18-6506

2. Jarnfors, J., Chen, G., van Deemter, K., & Sybesma, R. (2021). Using BERT for
choosing classifiers in Mandarin. Proceedings of the 14th International Conference on
Natural Language Generation, 172-176. https:/ /aclanthology.org/2021.inlg-1.17

7.1 Introduction

In this chapter, we study the surface realisation related issues for Mandarin. The surface
realisation is one of the major components in the classic natural language generation
pipeline (see §2.1). From a viewpoint of practical NLG, surface realisation is the module
responsible for mapping information produced by earlier components to well-formed
output strings in the target language (Reiter & Dale, 2000). More specifically, it employs
language-specific morpho-syntactic constraints to achieve proper word ordering, inflection,
and selection of function words. From a linguistic viewpoint, surface realisation embodies
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our understanding of grammar and morphology. Naturally, building a complete surface
realisation module for Mandarin is beyond the aim of this thesis. Our aim is twofold. On
the one hand, we wanted to build a surface realisation system that is able to express, in at
least one way, all the information that the other NLG modules on which we have worked
have accumulated. For example, if previous modules have decided to refer to an object
using a definite NP that ascribes 3 properties to the referent (e.g. “it is a table, it is red, and
it is large”), then our surface realisation modules should be able to produce at least one
well-formed NP that does this (e.g., in English, “the large table that is red”). On the other
hand, we want to highlight some of the surface realisation decisions that are particularly
difficult to make for Mandarin, such as the choice of classifiers.

Different types of realisers exist (Gatt & Krahmer, 2018). One line of work aims
primarily for linguistic depth and coverage by acquiring probabilistic grammar from large
corpora. For example, oPENccG (White et al., 2007) built a grammar bank based on
Combinatorial Categorial Grammar, extracted from the Penn Treebank (Marcus et al., 1993).
When realising, oPENCCG applies a chart-based algorithm to generate all possible surface
forms, which are then re-ranked by language models. Another line of work aims primarily
for ease of use and extendibility. This includes one of the most popular realisation engines:
simpleNLG (Gatt & Reiter, 2009). simpleNLG performs linearisation and morphological
inflection by means of human-crafted grammar-based rules. Unlike the realiser following
the first strategy, it is more controllable and extendable because it follows the principle
of keeping a clear separation between morphological and syntactic operations. This may
explain why SimpleNLG is more popular in practical applications. It has become the
realisation method of choice in many practical NLG applications, such as BabyTalk (Portet
et al., 2009) and Absum (Lapalme, 2013). To date, it has been adapted to German (Bollmann,
2011; Braun et al., 2019), French (Vaudry & Lapalme, 2013), Portuguese (de Oliveira &
Sripada, 2014), Italian (Mazzei et al., 2016), Spanish (Ramos-Soto et al., 2017), Filipino (Ong
et al., 2011), Telugu (Dokkara et al., 2015), and Tibetan (Kuanzhuo et al., 2020).

Therefore, in the first study of this chapter, we attempt to build a surface realiser based
on the tradition of simpleNLG, propose simpleNLG-zH (“Zhongwen” is Mandarin for
“Chinese”, G. Chen et al., 2018c¢), and evaluate the coverage and correctness of simpleNLG-
zH by means of the unit test as well as human evaluation. We started with focusing
on realising NPs and then extended it to cover other constructions and phenomena in
Mandarin. Before simpleNLG-zH, there was no such adaptation work yet for Sinitic
languages. Note that, there have been two Mandarin realisers following different traditions
other than simpleNLG. One is the krML (G. Yang & Bateman, 2009), a large-scale
multilingual generation and development. It supports limited sentence structures in
Mandarin (G. Yang & Bateman, 2009). He et al. (2009) introduced a data-driven generator,
with dependency trees as input. They used divide-and-conquer to break the dependency
tree into sub-trees, realising each sub-tree using a log-linear model recursively. However,
their system needs a large amount of fully inflected dependency trees as training data.

Although we took existing simpleNLG systems as a source of inspiration, the system is,
in many ways, a re-design. | For example, the morpho-syntactic structure of Mandarin
is very different from the languages that previous simpleNLG has covered. Building on
this, as a highly analytical language (see §3.2 for more details), Mandarin needs far fewer
morphological operations but many more syntactic constraints than English (C.-T. ]. Huang

The German, Portuguese, and Spanish simpleNLG systems copied many features from the one for English (in the
case of German) or French (in the other two cases).
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et al., 2009).

As aforesaid, we are interested in some of the Linguistic Realisation decisions that
are particular to Mandarin and that are, therefore, not covered by previous simpleNLG.
One typical example is that the grammar of Mandarin requires that, in certain syntactic
positions, a noun must be preceded by a classifier. Classifiers often give a rough indication
of the kind of entity denoted by the noun (for more details about the grammar of classifiers
see §A). For example, the classifier “” (zhi) in the NP “— 2" (yizhigdu; a dog) indicates
the head noun “Jf” (gou; dog) is an animal. Mandarin contains a large number of classifiers.
In the primary version of simpleNLG-zH, a classifier is inserted by looking up a dictionary,
where each entry is a classifier-noun pair since the choice of classifiers is limited by the
(head) noun with which the classifier is associated. However, this may still leave several
options, which may sometimes produce a different meaning, for example,

83 a. — P HN/— & BN
yi ge dianndo / yi tdi dianndo
‘a computer’
b. — W/ — (L ZW
yi ge laoshi / yi laoshi
‘a teacher’
¢ —MAN/—FA
yige rén / yi rén
‘a person / a group of people’
d. — FhmmEE / — W oE
yi bei kafei / yi kafei
‘a cup/can of coffee’

Although each of these cases involves classifier choice, the problem of choosing a classifier
is likely to be more challenging in those cases, such as (83-b)-(83-d), where the classifier
adds information, for example, in terms of politeness ((83-b), neutral vs. polite), number
((83-c), singular vs. plural), or quantity ((83-d), a cup vs. a can of coffee). This is perhaps
clearest in the case of (83-d), where “#” (b&i; cup) and “#” (ting; can) indicate different
containers, and consequently different quantities, of coffee; these classifiers are known as
measure words, as opposed to the “pure” classifiers of (83-a)-(83-c). simpleNLG-zH selects
classifiers on the basis of a dictionary, where each noun is corresponding with a single
classifier. However, clearly, choices as such cannot be accomplished by a dictionary-based
approach. To explore classifier selection more closely, we conduct another study (i.e., the
second study of this chapter), in which we try several data-driven approaches on this task
and evaluate them on a large scale classifier selection dataset.

Nevertheless, the way we accomplish the classifier selection is to ask a model to decide
the most proper classifier given its context (which is what a surface realiser should do).
This is slightly different from how human beings produce classifiers. We are, therefore,
curious, how hard this task is for human beings. To investigate this, we conduct a study
asking human participants to accomplish the exact same task as realisers do, evaluate the
outcomes, and compare the performance of participants with that of the models we tried
in the second study.

To sum up, in this chapter, we conduct three studies. In the first study, we introduce
simpleNLG-zH. It was developed as an adaptation from V4.4.8 of the original English
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Phrase sl = new SPhraseSpec(’leave’);
sl.setTense (PAST);

sl.setObject (new NPPhraseSpec(’the’, ’house’));
Phrase s2 = new StringPhraseSpec(’the boys?’);
sl.setSubject (s2);

Figure 7.1: A simpleNLG-EN code snippet for realising the sentence The boys left the house.

Phrase sl1 = new SPhraseSpec(’%ﬂ:’);
s1.setParticle(’ ] ?);

s1.setObject (new NPPhraseSpec (’F¥?));
Phrase s2 = new NPPhraseSpec(’%}Z’);
sl.setSubject (s2);

Figure 7.2: A simpleNLG-zH code snippet for realising the sentence “H & T ¥

SimpleNLG? (abbreviated as simpleNLG-EN in the rest of this chapter). We show that
SimpleNLG-ZH has wide coverage on test sentences, and on the human authored corpus
MTUNA (van Deemter et al., 2017) as well. In the second study, on a large scale classifier
selection corpus, we compare a number of classifier selectors, including not only the
traditional rule-based methods but also the most recent deep learning-based methods.
In the last study, we investigate how hard the task of classifier selection is for Mandarin
speakers.

7.2 Study 1: Constructing a Mandarin Realisation Engine

We build simpleNLG-zH on the basis of the simpleNLG framework. In this section, we
start by introducing the simpleNLG framework. Subsequently, we introduce the operations
in simpleNLG-zH and evaluate simpleNLG-ZH.

7.2.1 The simplenlg Framework

simpleNLG is a realisation engine designed for practical use. The input format of
simpleNLG is similar to a simplified dependency tree where the user should determine
the specifiers, modifiers and complements of each input phrase using a set of features.
simpleNLG encodes different constraints, regarding lexicon, morphology, syntax and
orthography, as a feature set (combining the features from the input) and passes the
resulting structure onto the next stage. Figure 7.1 and Figure 7.2 are two code snippets
showing examples of an input for simpleNLG-EN and simpleNLG-zH for generating the
sentence “HZEIT | BT (nanhai likaile fangzi; The boys left the house), respectively. To

The software is available at: https://github.com/simplenlg/
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construct a sentence using simpleNLG, we need to establish a verb phrase object and set
its object(s) and subject.

simplenLc follows good software engineering design principles, clearly separating the
modules for lexical and syntactic operations. The lexical component provides interfaces that
handle the lexical features and apply morphological rules. Vital features such as person,
number and tense are appended to target constituents or words for further realisation
processes. The syntactic component takes over at the phrase and clause level, and provides
Java classes for each phrasal sub-type (PhraseSpecs), where SPhraseSpec stands for the
class that model clauses.

simpleNLG-EN offers significant coverage of English morphology and syntax and
provides easy-to-use APIs with which the realisation process is programmatically control-
lable. It provides a well-established lexicon, the repository of the relevant items and their
properties. The lexicon was constructed from the NIH specialist lexicon®, which contains
more than 300,000 entries. Each lexical entry was tagged with detailed lexical features as
initial features of words. Simple shallow semantic features, like COLOUR and QUANTITATIVE,
are appended for deciding word order.

7.2.2 Morphology Operators

Morphology in Mandarin is usually thought to be extremely simple (Jensen, 1990). Packard
(2000) has challenged this view, arguing that more morphological operations are involved
in the construction of Chinese words than is usually thought, which include, for example,
word compounds (see §A for more details). However, key mechanisms such as subject-
verb agreement (which is treated by simpleNLG-EN as part of morphology operations)
are absent from Mandarin. We have therefore sided with mainstream linguistic opinion
and kept our morphology component relatively simple. We use only two main rules for
morphology: (1) mapping pronouns to their surface forms; and (2) appending the collective
marker “{/]” (mén).

Pronoun

Realising the surface forms of pronouns in simpleNLG-zH is similar to simpleNLG-EN in
its use of the features gender (masculine, feminine or neuter), number (singular or plural),
and person (first, second or third). However, written Mandarin has different third person
plural forms for all three different genders, i.e., “ftif]” (masculine), “i{/]” (feminine) and
“EA1” (neuter) (all of them have the same pronunciation: tamén) rather than the one plural
form they in English.

Collective Marker

In Mandarin, to say how many entities there are in a set, classifiers must be used. This is
typically done in a number phrase of the form [number + classifier + noun], for instance “—
BRI (yibayizi; a chair), “PI5KE T (lidngzhangzhuozi; two tables). Since number phrases
are typically used referentially (not as quantifiers), they have generally been regarded as
indefinite expressions, and these cannot be placed in subject or topic position in Mandarin
(C.-T. J. Huang et al., 2009).

The lexicon of simpleNLG-EN can be found at https:/ /github.com/simplenlg/simplenlg/blob/master/src/
main/java/simplenlg/lexicon/default-lexicon.xml
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NPPhraseSpec book =
this.phraseFactory.createNounPhrase ("—", Ll NS L

Figure 7.3: A simpleNLG-zH code snippet for realising the phrase “—Z4".

Unlike English, Mandarin bare nouns and number phrases with numbers larger than 1
can express plural meaning without the help of inflected plural markers. The morpheme
“fI1” in plural nouns serves as a “collective” marker rather than a traditionally plural marker
(Y.-h. A. Li, 2006); here a “plurality” is a number of individuals, whereas a “collective” is a
group (of individuals) as a whole. Under that definition, adding a morpheme “{/]” makes a
nominal phrase definite, which results in the morpheme “f/]” incompatible with a number
phrases, so “{]” cannot co-occur with number phrases. For example, the following phrase
is not acceptable in Mandarin:

@4 =AM
san ge rénmén
‘three people’

Note that the rules discussed above do not apply to pronouns that follow the rules defined
above.

It is hard to determine automatically whether a user wants to talk about a number of
individuals or about a group as a whole. Moreover, “]” is always only optional. Therefore,
in simpleNLG-zH, “f[]” is only added if the feature MEN is set to true. In addition, the
system will refuse to add a “f/]” to a number phrase. The way of constructing number
phrases is discussed in §7.2.3.

7.2.3 Syntactic Operators

The syntax module inherits the basic structure of simpleNLG-zH, dividing the syntactic
operations into processors that handle NPs, adjective phrases, verb phrases, verb phrases,
and clauses. Each processor is enriched based on the grammar of Mandarin. In this section,
we start with introducing the processor for the focus of this thesis: NP, and then discuss
other types of phrases.

Noun Phrase

The Noun Phrase module is the most complex phrase module in simpleNLG-zH. Building
on the grammar of Mandarin (see Appendix A), each noun phrase in simpleNLG-zH
contains multiple specifiers, pre-modifiers, post-modifiers, complements, and a head noun.

Number Phrase. Each number phrase is constructed by a number, a classifier and a head
noun; both the numeral and the classifier function as specifiers of the NP (for more about
specifiers, please see below).

As Number Phrases are very common in Mandarin, we designed a new constructor
specifically for them. For instance, the number phrase “—74" (yibénshii; a book) can be
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constructed using the code in Figure 7.3. The choice of classifiers depends mainly on the
head noun. Given a head noun, the current simpleNLG-zH retrieve the corresponding
classifier from a pre-defined dictionary. Additionally, as discussed in this chapter, for a
given noun, the choice of classifiers may depend on its meaning. For example, the classifier
of “[5" (fangzi; house) can be “J&”, “I&”, “[A]”, and many other possible classifiers based
on the size or the shape of the house. Therefore, simpleNLG-zH also allow users to specify
classifiers “by hand”. Attempts on automating this process by data-driven methods can be
found in §7.3.

Specifier. simpleNLG-zH allows multiple specifiers (compared to a single specifier in
simpleNLG-EN) within one NP. For example, a number phrase needs two specifiers: a
numeral and a classifier. All the following categories can be placed in specifier position:
pronouns (with or without the collective marker “men"), proper names, classifiers, numerals
and demonstratives. These specifiers appear in the following order (the A > B means
A should appear before B): proper name > pronoun > demonstrative > numeral >
classifier. The decision of whether or not to realise each of these specifiers is subject to
a number of constraints (C.-T. ]. Huang et al., 2009).

1. Suppose the input specification asks for a pronoun in the specifier position. This
pronoun must have a collective marker except in a structure that includes [demon-
strative/numeral + classifier]. For instance, (85-a) contains the collective marker, but
(85-b) does not;

(85) a. ABAIT A
tamén xuéshéng
‘them students’
b. M — 4
ta yige xuésheng
‘them students’

2. Proper names in specifier position can only be realised if the structure includes
[pronoun + numeral + classifier], [demonstrative + classifier] or [demonstrative +
numeral + classifier], for example:

86) K= A #AE
zhangsan nageé xuéshéng
‘the student called Zhangsan’

3. A demonstrative or a numeral will only be realised if there is a classifier in the same
NP and vise versa:

87)  (GR/—) P ¥
(na/yi) ge xuésheng
‘that/a student’

173



SURFACE REALISATION

As discussed in §7.2.2, number phrases are often seen as indefinite phrases but not always.
When they are for quantification they can be placed in the subject/topic position. Therefore,
simpleNLG-zH permits a number phrase in the subject/topic position, e.g.,

88) = AN B AR
san ge rén chi lidng kuai dangao
‘three people eat two piece of cakes’

For nouns (including bare nouns, pronouns and proper nouns), the feature possessive
is also realised in the specifier position: simpleNLG-zH adds a particle “H]” (de) as an
associative marker after the noun.

”oou

Localiser. Localisers (corresponding to English words such as “on”, “above”, etc.) form
a special syntactic category. They are used in location phrases, which is a particular type
of preposition phrases. The location information in a location phrase is expressed in the
localiser rather than the head preposition. For example, in (89), localiser “_f-” (on) works as
a supplement of the noun phrase in the proposition phrase (i.e., location phrase).

89  [pp 7 [Np T L]
zai zhuozi shang

‘on the table’

In simpleNLG-zH, the localiser itself is defined as a normal noun with a lexical feature
LOCATIVE in the lexicon. When constructing a location phrase, if the localiser is a disyllabic
word, such as “ [JH]” (shangmian), then a particle “H7” is inserted before the localiser to
construct the phrase (90-a). However, if such a prepositional phrase works as a pre-modifier
of another noun, then that inserted particle will be disregarded, such as (90-b).

(90) a. TEHETH LE
zai zhuozi shangmian
‘on the table’
b. ST L\ w$H
zai zhudzi shangmian de shi
‘the book on the table’

Pre-modifier. simpleNLG-EN handles the orders of multiple pre-modifiers based on their
meanings, where the meanings are acquired from a huge lexicon that contains a series of
tags (e.g., COLOUR, QUANTITATIVE) indicating the meaning of words. It adds pre-modifiers
in the order of quantitative adjectives, colour adjectives, classifying adjectives and nouns.
For simpleNLG-zH, more categories of words can be placed in the pre-modifier position,
other than just adjectives and nouns. It performs re-ordering based on pre-modifiers’
part-of-speech and lexical features set by the users.

Our system handles two different types of adjectives, namely, predicative adjectives
and non-predicate adjectives. For predicative adjectives, the system will automatically
add a “HJ” (de) between the adjectives and the head noun, such as “4xff " (1t de
yizi; green chair). “)” can be omitted by setting the feature NO_DE to TRUE, which results
in the phrase “4kFi 1 (i yizi; green chair). We leave whether to add a “f” for the
users of simpleNLG-zH because such an choice is not subject to strict rules and is with a
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certain degree of variation (Paul, 2010). Non-predicate adjectives, in contrast to predicative
adjectives, are a special type of adjectives that cannot function as predicate on their own
(e.g., “H” (n4; male) and “Zz” (nly; female)), in which the particle “f” (de) is always omitted.
Thus, the particle “HJ” will not be appended if the adjective is non-predicate, such as “5
N” (nanrén; man). The feature is set based on the information of the lexicon loaded into
simpleNLG-zH (details see §7.2.4).

Nouns and noun phrases, as pre-modifiers, can play two different roles: they can be con-
catenated with the head noun to construct a compound noun: for example, (91-a); or, they
can be connected by means of a particle “HJ”, which works as an associative marker: for ex-
ample, (91-b). To construct the latter, the feature ASSOCIATIVE should be set to TRUE. The or-
der of the pre-modifiers is localisers > verbs/clauses > adjectives with de > nouns
with associative marker > adjectives without de > non-predicate adjectives >
nouns.

01 a REHF
daxue jiaoyu
‘university education’
b, HL% A
heitéufa de rén
‘the man with black hair’

Adjective Phrase

Adjective phrases in Mandarin differ from those in the languages for which previous
simpleNLG engines were built. Most adjectives in Mandarin can act as the predicate of a
clause without the help of a copula verb (see below). Such adjectives are called predicate
adjectives.

Predicate Adjective. Although adjectives can act as predicates, it is necessary to distin-
guish them from verbs (C.-T. ]. Huang et al., 2009). We implemented the realisation of
a clause like (92-a) by specifying an empty copula. This is achieved by creating a new
constructor which accepts a subject noun and a predicate adjective.

Predicate adjectives in simpleNLG-zH also accept negative words and modal words.
For example, the sentence (92-b) has both a negative word “\” (bw; not), and a modal
word “RiZ” (yinggai; could).

(92) a. fBIRE
ta hén gao
‘he is very tall’
b. Al NIZ A
ta yinggai b1 gao
‘he couldn’t be tall’

Non-predicate Adjective. As discussed when we introduced pre-modifiers, non-predicate
adjectives always omit the particle “H]” between the adjective and the head noun. However,
when a non-predicate adjective functions as a predicate (with the help of a copula), such as
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“fib & B HY” (ta shi nande; he is a man), the copula “#&” (shi; is) and the particle “f” (de)
are obligatory (Paul, 2010).

“H¢” construction. In English, degree adjectives have comparative and superlative de-
grees, whose realisation is implemented in the morphology processor. In Mandarin,
realisation is performed by modifying the syntax. The superlative degree is realised by
adding an adverb pre-modifier “f” (zui; most); the comparative is realised by the “tt” (bi)
construction.

simpleNLG-zH implements the “I.” construction as a prepositional phrase. For
example, for the sentence (93-a), the word “I.” itself is seen as the head of a preposition
phrase, which is a pre-modifier of an adjective phrase. Such a construction (i.e., as an
adjective phrase) can act as the pre-modifier of a noun phrase, for example, (93-b). Note
that the head of this noun phrase can be omitted, but the particle “[]” (de) should be
maintained as a sentence-final marker, i.e. (93-c).

(93) a. fib b /NEH
ta bi xidoming gao
‘he is taller than Xiaoming’
b. AT IEIRE B fth B R A
tamén ban méiyou bi ta genggaode rén
‘none of his classmates is taller than he’
o AEATIERE H fth HE 0
tamén ban méiyodu bi ta genggaode

7

‘none of his classmates is taller than he

Verb Phrase

ugEL

Pre-modifier and Post-modifier. Verb phrases can contain the associative markers “4+

(dé) and “#8” (de). The latter is appended to the pre-modifier if it is disyllabic, for example,

PR (kuaist de pdo; fast run). If the pre-modifier is monosyllabic, “##” (kuai-
i =N

pdo; fast run) is constructed instead, with the particle “#fi” disregarded. The particle “4%
connects head verbs with their complements: “HIf3R” (pdodekuai; running fast).

Aspect. xPML (G. Yang & Bateman, 2009) used templates with particles like “iL” (guo),
“7” (zh&) or “%&” (zhe)to model aspect. However, KPML’s coverage of language variation is
limited because it uses a limited number of templates. Since aspect in Mandarin is realised
using post-verbal or post-clause particles, we took a more flexible strategy that enables
users to add particles based on their need.

Particles can be in two positions: post-verbal and post-clausal. In “ffliZ& /X" (ta chizhe
fan; he is eating), the particle “%&” (zhe), which is a aspectual durative marker, is appended
to a VPPhraseSpec object. Similarly, the class SPhraseSpec, which represents a clause, has
the capability to append a particle to its end. For example, in “fiiiZ 7} T~ (ta chi fanle; he
has eaten), the particle “ | ” is appended to the clause “fBFZ ¥} (tachifan; he eats).
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Clause

At the Clause level, apart from the issues related to negative and interrogative sentences
inherited from simpleNLG-EN, we considered "{!" (bd) and "#" (bei) constructions which
are two common constructions in Mandarin. We also discuss how topicalised sentences are
realised using simpleNLG-zH.

Negative Sentence. Negative sentences in simpleNLG-zH are realised by inserting neg-
ative words before the predicate verb (or the predicate) and after a modal word. For
example, the negation of (94-a) is the sentence with an inserted negative word “/” (bw;
not) before “£” (qui; go) and after the modal word “N1%” (yingai; should) resulting (94-b).
simpleNLG-zH can also realise negative modal by viewing the negative modal as a merged
word, much like haven't or shouldn’t in English (D. Xu, 1997), for example, the sentence
(94-¢).

(94) a L RIX £ L
ta yinggai qit shangxué
‘he should go to school’
b. fth MIZ A £ L2
ta yinggai bt qit shangxué
‘he should haven’t gone to school’
o A RIZ K B
ta bt yinggai qu shangxué
‘he should not go to school’

In addition, Mandarin has a number of different negative words, selected based on the
head verb. For example, applied to the sentence “fth 51 " (ta you yizi; he has chairs),
instead of using “"” (bu), the word “¥X” (méi) should be used: “flixH " (ta mei-
you yizi; he doesn’t have a chair). simpleNLG-zH allows users to specify by hand what
negation word should be chosen in a specific case by using the feature negative_word,
thus overruling the system’s default choice.

“3” Construction. The “I” construction is a commonly seen and useful structure for
focusing on the result or influence of an action, which does not exist in English. For
example, considering the sentence (95-a), with the “i.” construction, the influence of “4T”
(d&; beat) is highlighted. The natural phrase order of this example is the sentence (95-b),
which is the basic structure that simpleNLG-zH can handle, i.e., [subject + predicate
verb + object]. In the “#8” construction, however, the marker adverb “42” is added after
the subject, and the object is moved to the position right before the predicate verb phrase:
[subject + “f8” + object + predicate verb].

Note that the positions of modal words and negative words do not follow the movement
of the verb phrases (Y. Liu et al., 2001). In other words, in the resulting “¥%” construction,
the modal words and negative words are placed before the object in their own order, as
in (95-c). simpleNLG-zH realises a sentence with the “J8” construction if the user set the
feature BA to TRUE.

(95) a. AR E /NI EE M AT

ta bd xidoming zhongzhong de da
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‘he beat Xiaoming heavily”
b. fth EE H T /N
ta zhongzhong de dd xidoming
‘he beat Xiaoming heavily’
c. MRIZAL/NATTA
ta yinggai méi ba xidoming dd téng
‘he should haven’t beaten xiaoming heavily’

“#%” Construction. The “#” construction in Mandarin is one of the ways to express the
passive, using the basic syntactic structure: [object + “#{” + subject + predicate verb].
Using the same example for the “J%” construction, the transformed sentence would be
“/NBH B EEEE Hb 477 (xidoming beita zhongzhong de d&; Xiaoming is beaten heavily by
him). simpleNLG-zH chooses between active and passive based on the value of the feature
PASSIVE, which is inherited from simpleNLG-EN.

Interrogative. simpleNLG-zH inherits and adapts all its interrogative patterns from
simpleNLG-EN, including “HIXH"” (yduméiydu; Yes-or-no) and wh-questions: “/& 4"
(zénme; How), “f+ 24" (shénme; What), “BFE” (nali; Where), “i” (shui; Who), “Hft
2" (weishénme; Why), “Z/b” (dudshdo; How Many). simpleNLG-zH adds two further
types, namely “Blf1” (ndge; Which) and “ft 4B {&” (shénmeshishou; When). For Yes-or-no
sentences, simpleNLG-zH appends the interrogative particle “M%” at the end of a sentence;
for instance, “RE E2E15? 7 (ni qu shangxué ma; Will you go to school?).

In simpleNLG-EN, for wh-questions, only What and Who made a difference between
placing the interrogative marker in subject and object position. In simpleNLG-zH, however,
nearly all wh-question markers can be placed in both positions. Here we use a “ft4” (What)
sentence as an example: For the sentence (96-a), if we set the feature INTERROGATIVE_TYPE
to what_object, then the sentence is changed to (96-b). Setting the feature to what_subject
results in (96-c). In interrogated “#.” constructions and ‘#%” constructions, the wh-question
markers are placed in situ, i.e., replacing the phrases in the original subject or object
position, according to the value of INTERROGATIVE_TYPE.

%6) a BN HER T MK ET

taifeng cuihui le fangzi

‘the typhoon destroyed his house’
b. BXN#EER T 4

taiféeng cuthui le shénme

‘what did the typhoon destroy?’
c fa#SR T ET

shénme cuthul le tadefangzi

‘what destroyed his house’

Topicalisation. Topic structures, especially gapped topic structures, are a very common
syntactic structure in Mandarin (L. Xu & Langendoen, 1985). For example, (97-a) is a
gapped topicalised sentence, in which the constituent after the “[#)” in the phrase “HEK
5H)” (naba dahao de; the large one) moved into the topic position and left a gap.
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Lexical Category Universal POS Tag

adverb ADV, PART
noun NOUN, PROPN
preposition ADP
demonstrative DET
conjunction SCON]J, CCONJ
pronoun PRONOUN
adjective ADJ

modal AUX

verb VERB

Table 7.1: Relationship between Universal POS tags and lexical categories in simpleNLG-zH

In the current version of simpleNLG-zH, we realise a gapped topicalised sentence by
viewing it as two coordinated noun phrases, in which the second noun phrase has an empty
head noun. For (97-a), the two noun phrases are (97-b) and (97-c). In the current version of
our system, there is no guarantee that the empty head of the second clause is bounded
by the first clause. We also consider orthography in topicalisation, i.e., a conjunction of
words between two phrases should be changed to a comma. In our system, the topicalised
sentence, as a CoordinatedPhraseElement object, calls the topicalise() function to take
care of the punctuation.

(97) a.  SRERRTF, THERSH
ltse de yizi, na b dahao de
‘(as for) the green chair, it is the large one’
b. LrEHRET
ltise de yizi
‘the green chair’
c. FREKREFH
naba dahao de
‘the large one’

7.2.4 Lexicon

Unlike simpleNLG-EN, we did not have a ready-to-use elaborate lexicon for simpleNLG-
zH. Instead, we extracted a primary lexicon from the Chinese as a Foreign Language (CFL)
corpus* (J. Lee et al., 2017), which is a sub-corpus of the Universal Dependencies corpus.
The CFL corpus has 451 human tagged dependency trees and 7,256 tokens in total. Each
word in CFL was primarily mapped to one of the lexical categories in simpleNLG-zH
based on the relations in Table 7.1 as well as the following rules:

1. The tag <proper/> is appended for PROPNs;

2. The tag <nonpredicate/> is appended for non-predicate adjectives manually, which
is based on the non-predicate adjective list in Y. Liu et al. (2001);

4 The dataset is available at https:/ /github.com/UniversalDependencies/UD_Chinese-CFL/tree /master
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3. The tag <locative/> is appended for localisers manually;

4. The words that serve as a dependent of a c1f (classifier) dependency relation are
given the category classifier.

The constructed lexicon has 1,639 lexical entries in total.

7.2.5 Evaluating SimpleNLG-ZH

To assess the coverage and the correctness of simpleNLG-zH, we decided to evaluate it in
two ways. Firstly, following Ramos-Soto et al. (2017) and Bollmann (2011), we applied a set
of unit tests to each module of the system, using the test cases from simpleNLG-EN plus a
set of newly constructed test cases that address some of the peculiarities of Mandarin (e.g.,
the “” construct).

Secondly, we evaluated the system using a set of expressions from a corpus of actual
language use; this was reminiscent of Mazzei et al. (2016) and Bollmann (2011), but using a
larger set of expressions. In all cases, when faced with an input expression (i.e., from a test
set or corpus), we used this expression to construct a formatted input that was then passed
to simpleNLG-ZzH to produce an output expression which was then compared to the input
expression.

Evaluation with Tests Cases

The test cases consist of 144 sentences manually translated and adapted from simpleNnLG
V4.4.8 JUnit Tests and two reference grammar books (C.-T. J. Huang et al., 2009; Y. Liu
et al., 2001). The test cases cover all the linguistic features discussed in previous sections
and all possible syntactic structures of referring expressions in Mandarin introduced in van
Deemter et al. (2017). All the tests were passed by simpleNLG-zH, that is, the generated
sentences were all identical verbatim to the inputs.

Corpus-based Evaluation.

We picked 100 noun phrases at random from the MTUNA corpus (van Deemter et al., 2017),
which is the corpus that the first version of simpleNLG-zH focuses on and also which this
thesis focus on (i.e., NPs). MTUNA is a corpus that has totally 1,650 referring expressions.
We then re-generated these expressions using simpleNLG-zH. Not all re-generated NPs
were identical verbatim to the original MTUNA NPs. 35 noun phrases did not match
completely (i.e., verbatim) with the original noun phrases. Table 7.2 lists some typical
examples, showing differences in word ordering, punctuation, and so on. We ran a human
evaluation to find out whether the realised sentences were acceptable (i.e., are they fluent
and do they have the same meaning as their inputs). Two native speakers annotated
the outputs; they reached a good inter-annotator agreement (x = 0.77) and were asked
to produce a consensus annotation, which was then used for our evaluation. It turned
out that 90 out of 100 sentences were judged to be acceptable, which we consider a very
encouraging result.

We classified the unmatched sentences into three types. The first one is where punctua-
tion was different, as in Example 1 in Table 7.2. The reason is that some sentences used
commas to separate modifiers but simpleNLG-zH does not. These cases were generally
judged to be acceptable.
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ID | Noun Phrases from MTuna Realised Sentence Acc.

1| BLEk, ISV, Bk, RER KRS PR RS A | Yes
¥i3 heitéufa luosaihti heixift gianse-
héitéufa, luosaihd, heixifa, gianse- | chenyt
cheny1 black hair, whiskers, black suit and light
black hair, whiskers, black suit and light | shirt
shirt

2 | —SRRIILBHDE — K IAB M KB PR Yes
yizhang da de hongse de shafa yizhang héngse de da de shafa
the large red sofa the red large sofa

3 | BHREREAHTA WA OIREE 79N Yes
dai yanjing de lidng ge ren liang ge dai ydnjing de rén
the two people who wear glasses the two people who wear glasses

L | TEERTANEIR TRERE | 0 B R A AE AT I8 T |
GRS 2 D PNEN o] B A SREE K KRS
héngse zhengmian chdoxiang ping- | zhéngmian chdoxiang pingmii xido
mil xido yizi hudzhé lise beixiang | héngse yizi hudozhé beixiang ping-
pingmu de da féngshan mu de liisé da fengshan
the red fronting small chair and the | the fronting red small chair and the
green backing large fan backing green large fan

5 | BELAERER WOMREE /) EE LK No
hése téufa dai yanjing de dai yanjing de hése téufa
the person with black hair and glasses | the person with glasses and black hair

[ TERT, BrEBAAD, A | Galed o
BT H IR
héngse yizi, yizibei chdo youbian,
kéyi kandao yizibei de zhengmian
It is a red chair whose back is facing
right and we could see the front of its
back.

- | EFWEITHNRFRIESA RS | 1E J0 38D F R A E#N |
(RL:REN:D)R0zE e {19 K XU
zheng chaoxiang womén de xido de | zheéng chdoxiang wo de xido de yi-
yizi hé zheng chdoxiang womén de | zi hé zheng chdoxiang wo de da de
da de féngshan fengshan
the small chair facing us and the large | the small chair facing me and the large
fan facing us fan facing me

Table 7.2: Example sentences (with their Pinyin and translations) that were not identical to
the inputs from MTUNA (unmatched sentences). The last column says whether the output was
judged to be acceptable by our annotators. T and Acc. represents “type” and “acceptable”,
respectively.

The second type is where the word order of the realised sentences was different from
the input. There are three sub-types:

¢ The order of adjective pre-modifiers was different, as in Examples 2 and 4. Most of
these deviations were judged to be acceptable, but sentence 4 shows an unacceptable
example, where the word “4L.f2” (héngse; red) before “/\” (xido; little) accidentally
produced a new word, “/| LB (light red), which has different meaning;
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* simpleNLG-zH enforces the pre-modifiers to appear following the specifiers. How-
ever, in the MTUNA corpus, there are expressions, like Example 3, that switch
the place of specifiers and pre-modifiers. All such re-orderings were judged to be
acceptable;

¢ There is a special syntactic pattern of noun phrases in Mandarin, where a Noun
is omitted that is recoverable from the context. For example, in Example 5, the
head is omitted in the original sentence to construct a free relative (Teng, 1979)
where the particle “H” works as a sentence-final marker. However, simpleNLG-zH
cannot recognise the functionality of the particle, thus it switches two pre-modifiers
according to the orders defined in §7.2.3, which results in a noun phrase with a
different meaning. We found 6 unacceptable cases of the second type.

simpleNLG-zH failed to reproduce some types of language use that are highly colloquial
and not strictly grammatical. We found 4 such cases, as in Example 6 in Table 7.2, and
in Example 7, where the pronoun “Ff/]” (wOmén; us) in the sentence actually refers to
the subject himself (but using the plural form); simpleNLG-zH realises this as a singular
pronoun.

Comparing these results with earlier evaluations of simpleNLG-like systems, our results
on the tests sets were perfect (with system input constructed by hand from the input
expressions), which was also the case for most earlier studies (Bollmann, 2011; Ramos-
Soto et al., 2017). Four of the previous evaluations involved a corpus. Bollmann (2011)
and Dokkara et al. (2015) evaluated their system on 152 sentences from five Wikipedia
articles and 738 sentences randomly picked from a book, respectively. The linguistic
variation of their test set is greater than ours (which focused on referring expressions), but
the quality of their output may have been lower: Dokkara et al. (2015) reported 57% of
exact matches, lower than our 65%. Bollmann (2011) reported 76% of the sentences “could
be generated”, though what this meant is not entirely clear. Mazzei et al. (2016) tested the
coverage and scalability of their system by automatically mapping 20 dependency trees
from the Universal Dependency corpus. They reported only 10% exact matching sentences
(2/20) and their discussion suggests that their results for declarative and interrogative
sentences may have been disappointing. Braun et al. (2019) used a larger (compared to
other evaluations that involves corpora and the current study) test set, which contains 3800
sentences. Since German is a morphology rich language, most of these test cases are for
assessing inflection operators.

7.2.6 Discussion

The realisation has turned out to be non-trivial in all the languages addressed in the
simpleNLG tradition so far, but where the most challenging problems are (i.e., in which
components of the system), and what the optimal balance between hand-crafting and
data-driven method should lie, is something that differs per language.

As for the former issue, we have seen that Mandarin appears to require only a small set
of morphological operators, but a much-enhanced set of syntactic processing rules.

As for the latter issue, our study of errors in simpleNLG-zH offers support for the idea
that some issues in realisation are best handled using data-driven methods (Langkilde,
2000; White et al., 2007). As it stands, simpleNLG-zH makes all its decisions based on a
combination of handcrafted rules and explicit stipulations. It would be preferable if the
role of the developer in making these decisions could be reduced. This is true for the

182



7.3 STUDY 2: SELECTING CLASSIFIERS USING DATA-DRIVEN METHODS

choice of classifiers, for the use of particles (such as “f*]” and “ T *’), for the choice between
different negation words (“/~" or “i%”), and for ordering the modifiers and specifiers (as
mentioned in §7.2.5). In all these cases, simpleNLG-zH assumes that the choice is made
outside the system (i.e., by a person or by another component of the NLG system). It
would be useful if these choices were made by simpleNLG-zH itself, but it is difficult to
see how a rule-based approach could accomplish this.

7.3 Study 2: Selecting Classifiers using Data-Driven Methods

As discussed, the current simpleNLG-zH’s treatment of classifier selection is imperfect,
because such a selection is context-dependent. We, therefore, need clever algorithmic
solutions. These algorithms are of predicting what classifier suits a given discourse context.
Before developing new algorithms, we need to redefine the task to fit the potential data-
driven methods. The most sophisticated model we are aware of is Peinelt et al. (2017).
Ambitiously, these authors decided to deal with classifiers of all different types, also
including measure words for instance, which are difficult to predict because they add
information. They approached the problem as follows: Given a sentence in which a
classifier is yet to be realised, and the head noun is flagged, predict the missing classifier.
For example, in the input:

(98)  — (CL) K% 7 (h)Bk%%(/h)
yi (CL) jingcdi de (h)qiasai(/h)
‘a wonderful ball game’

(CL) indicates where the missing classifier is and the (h) tag pair flags the head noun.
The authors construct a large-scale classifier dataset, namely ChineseClassifierDataset’
(henceforth, ccp) by extracting and filtering data from three publicly available Chinese
corpora (including the Lancaster Corpus of Mandarin Chinese, the UCLA Corpus of Written
Chinese, and the Leiden Weibo Corpus). They did experiments on their ccp corpus with
several baselines, including a rule-based system, two machine learning based systems,
and an LSTM-based system (Hochreiter & Schmidhuber, 1997). An initial valuation study
indicated that the LSTM achieved the best performance.

Our own work takes the same perspective as Peinelt et al. (2017). But although the
performance of the model of Peinelt et al. is encouraging, it still leaves considerable room
for improvement; in particular, the question comes up whether BERT (Devlin et al.,
2019), with its superior ability to take context into account, might do better. In addition,
the model of Peinelt et al. offers only limited insight, because it does not distinguish
between different types of classifiers. In other words, the performance of the model may
mask important differences between different types of classifier choices. A good way to
address this limitation would be to make use of an existing categorisation of classifier
types. But although linguists generally agree that “true” (or “sortal") classifiers should be
distinguished from measure words (L. L.-S. Cheng & Sybesma, 1999; Croft, 1994), there is
some disagreement on how these sub-types should be defined and what further divisions
between sub-types should be taken into account. Sub-types are often described by example,
without computationally implementable criteria or explicit lists of classifiers (N. N. Zhang,

5 The dataset is available at: github.com/wuningxi/ChineseClassifierDataset
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Figure 7.4: Sketch of our BERT-based Classifier selection models: predicting the classifier
by unmasking the [MASK] (left); predicting the classifier as classification (right).

2013). To our knowledge, Her and Lai (2012) are the only ones to provide comprehensive
lists of classifiers of various sub-types, and in what follows we will make use of these lists.

In this section, we start by introducing two different BERT-based models, one of which
uses word masking and one of which performs classification. Subsequently, we report on
our comprehensive evaluation experiments, in which we compare our BERT-based models
with each other and with several baselines, using the ccp dataset.

7.3.1 Choosing Classifiers using BERT

To test whether the most recent contextual pre-trained language models help choose
classifiers, we decided to try BERT. Specifically, we use BERT to accomplish the task of
choosing classifiers in two ways: an unsupervised way (i.e., predicting classifiers by
unmasking masked tokens) and a supervised way (i.e., fine-tuning BERT on the task of
classifier prediction).

Unmasking Masked Classifiers

In order to assess how well BERT, as a masked language model, can model classifiers, we
tried to use BERT without any fine-tuning on the task of classifier selection. Specifically,
as shown in Figure 7.4 (left), we replace the classifier indicator (CL) with the [MASK]
symbol of BERT and ask BERT to unmask it. © The unmasked token serves as the predicted
classifier. (Note that addressing the classifier selection task in this way will sometimes
produce words that are not classifiers.) We refer to this model as MLM.

Classifying Classifiers

Additionally, we test BERT in its classic use. To do this, we fine-tune BERT on the ccp as a
multi-class classification, where there are 172 classes (i.e., 172 classifier words) in total, and
make a prediction with the help of the [CLS] symbol (see Figure 7.4 (right)). We refer to
this model as BERT.

Since our experiments suggested that the head flag (i.e., (h) and (/h)) makes no contribution to classifier selection,
we drop it to speed up the prediction.
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Research Questions

At the start of our research, we formulated the following hypotheses and research questions.

1. Since BERT models context closely and is pre-trained on large scale corpora, we expect
it to outperform other models;

2. How do the two BERT-based models compare? Although we expect BERT to outper-
form MLM, we were curious to see how well MLM performs;

3. We are curious how well BERT can handle classifiers that add information (concretely:
measure words, plurality, and politeness).

7.3.2 Evaluating Classifier Selectors
Setup

Dataset. In total, there are 681,102 sentences in the ccp dataset. We split the dataset into
training (60%), development (20%), and test (20%) sets following Peinelt et al. (2017).

Baselines. We tried several baseline models proposed in Peinelt et al. (2017), including:

1. a rule-based model (Rule): given a head noun, assign the most frequent classifier
associated with it in the training data. If two or more classifiers are equally frequent,
one of the classifiers is randomly assigned. If the head noun does not appear in the
training data, then the classifier “ge” (which is particularly frequent and often seen
as a “default” classifier) is assigned;

2. an LSTM model: For this model, we use a bi-directional LSTM (Hochreiter & Schmid-
huber, 1997; Schuster & Paliwal, 1997) to encode the input; it makes predictions using
the hidden representation of the last time step.

Metrics. We evaluate each model in terms of accuracy, macro-averaged precision, recall,
and F1. Additionally, since the distribution of the ccp is skewed (e.g., more than 25% of

the sentences use ““1>”), we also report the weighted averaged precision, recall, and F1.

Implementation Details. For BERT, we use the “bert-base-chinese” version. 7 When
fine-tuning, we set the learning rate to 2e-5 and batch size to 150. For the LSTM, we set the
batch size to 256, the hidden size to 300, and the learning rate to 2e-5. We use pre-trained
Chinese word embeddings from S. Li et al. (2018)8.

Results and Analysis

Table 7.3 charts the performance of each model. The results confirm the assumption of
our first research question that BERT performs the best, defeating all models on all metrics
with large margins. For example, for accuracy, compared to the second best model LSTV,
BERT boosts performance from 70.44% to 81.71%. Considering its simplicity, the rule-based

The “bert-base-chinese” can be found at: huggingface.co/bert-base-chinese
These are word embeddings trained by skip-gram on 9 large Chinese corpora with 300 dimensions. It is available
at: github.com/Embedding/Chinese-Word-Vectors
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Macro-averaged Weighted-averaged
Model Acc. Precision Recall F1 Precision Recall F1

Rule 61.89 34.87 20.50 23.39 58.23 61.90 58.24
LSTM 70.44 33.11 2012 2248 67.90 70.44 68.12
MLM 62.22 51.91 33.40 37.68 77.28 6223 68.21
BERT 81.71 52.86 38.10 40.77 80.70 81.71 80.77

Table 7.3: Evaluation Results of each model on ccp. The best results are boldfaced,
whereas the second best are underlined. MLM is the model that uses BERT as a masked
language model, while BERT is the fine-tuned BERT. Acc. stands for Accuracy.

Category Frequency Accuracy
True Classifier 85,917 87.8
Dual Classifier 10,817 65.2
Measure Words 11,317 61.1

Table 7.4: BERT’s performance on different types of classifiers; frequency of each type in
the ccp test set.

system achieved considerably good performance, with higher macro-averaged precision,
recall, and F1 than LSTM. This also confirms the viability of a dictionary-based classifier
selector, such as the one embedded in simpleNLG-zH.

MLM, as a model without any training on ccp, performs remarkably well. It receives
the second best weighted average as well as micro-averaged F1 (in line with our second
research question). Note that, as mentioned, there is no guarantee that the outputs of
MLM are classifiers. Concretely, during testing, MLM produces 1566 word types that are
not classifiers. This is one of the reasons why its fine-tuned version, BERT, has a major
improvement on the (macro-averaged and weighted averaged) recall scores. Nonetheless, it
surprised us that MLM can produce a greater variety of classifiers than all other models. More
specifically, out of 172 classifiers available in ccp, MLM has correctly produced 160 different
classifiers, compared to the 140 of Rule, 108 of LSTM, and 136 of BERT. This suggests MLM
can sometimes handle rarely seen classifiers.

Regarding the last research question, we looked into measure words, plurality, and
politeness respectively. First, we categorise classifiers in ccp into three sub-categories:
true classifiers, measure words, and dual classifiers (i.e., classifiers that can function either
as true classifiers or as measure words) based on the lists provided by Her and Lai (2012)°.
Table 7.4 breaks down the performance into different sub-types of classifiers. As we can
see, although measure words appear more frequently in ccp than dual classifiers, they
still receive a significantly lower accuracy.

Second, for politeness, the only frequent enough'® politeness classifier is “fiL” (wei),
which expresses politeness when referring to a person. “fil” appears 6737 times in the
training data, but only obtains a recall score of 59.87%, which is low compared to equally

These classifier lists were constructed on the basis of the Mandarin Daily Dictionary of Chinese Classifiers
(MDDCCQ).
We define a classifier as frequent enough if it appears more than 50 times in the training set.
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frequent classifiers (classifiers with frequencies in the range of [5000, 8000) have an average
recall score of 77.84%). The confusion matrix (which is too large to print here but will be
made available), shows that it is highly likely to be confused with its neutral alternative
A (52),

Third, regarding plurality, we pick out frequent-enough classifiers that only convey the
meaning of plurality!!, including “Ff” (qan), “H£” (dui), “L£” (xie), “E” (tao), “XI” (dui),
and “X{” (shuang). Their recall scores are 52.51% (2453), 52.12% (1914), 56.51% (1910),
34.57% (1308), 62.39% (1321), and 76.49% (806), respectively, where the number in brackets
is the frequency of that classifier in the training set. Meanwhile, the average recall of the
range [800, 1500) and [1500, 3000) are 61.48% and 76.97%. It is interesting that BERT does
a relatively good job for handling plural classifiers meaning “pair” (i.e., “X”, and “{”)
while failing to handle plural classifiers meaning “multiple” (i.e., g e, B8 and
“Z&”). All in all, classifiers that add information regarding measurement, plurality and
politeness could not be properly selected. One explanation is that their context cannot
provide enough information to pick the right classifier. Thus, for the last research question,
BERT does not work well in handling classifiers that add information.

Distance between the Classifier and the Head Noun. We also explore factors that might
influence the decisions of BERT. First, we consider the distance between the classifier and
the head noun. For instance, for example (98), there is a pre-modifier consisting of two
words between the classifier “37” (chdng) and the head noun “¥k%%” (qgitisai). Thus, the
distance for example (98) is 2. We expect that the larger the distance is, the worse BERT
performs. In our experiments, for correct predictions, the average distance (in terms of
the number of words) is 1.08 while for incorrect predictions it is 1.21. An unpaired t-test
confirms that distance has a negative effect on the model’s performance (p < .001).

7.3.3 Discussion

In this study, we accomplish the task by means of the state-of-the-art machine learning
technique. From an evaluation on a large scale classifier selection corpus (namely ccp), we
found that 1) a contextualised pre-trained model (i.e., BERT and MLM) performs remarkably
well on the task of choosing classifiers in Mandarin, and fine-tuning helps improve the
recall of choosing classifiers; 2) a simple rule-based system has respectable performance;
but 3) in terms of accuracy, a pre-trained masked language model (i.e., MLM) was able to
select proper classifiers about equally well as the above rule-based system; 4) BERT struggles
to predict classifiers that add information such as measurement, plurality, and politeness.

7.4 Study 3: How well can Human Beings Choose Classifier from its
Context?

The study in §7.3 suggested that BERT struggles to predict classifiers that add information
such as measurement, plurality, and politeness. It confirmed our expectation that some
classifier occurrences cannot be predicted from their linguistic context alone since they
themselves carry additional information. This makes us aware of how hard this task (i.e.,
filling Mandarin classifiers given their context) is? In response to this, we conduct a series

11 Some classifiers have multiple meanings, one of which expresses plurality.
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of experiments involving human participants. In these human experiments, we ask several
participants to choose classifiers given a linguistic context. By comparing the outcomes of
this experiment with the corresponding “references” from the ccp corpus, we will obtain
a better understanding of the difficulty of the task.

7.4.1 Experiment Setup

A natural experiment setting is to simply sample a number of items from the ccp corpus
and conduct human experiments on the sampled set. Although this setting can provide
a good enough picture of how well human beings can accomplish the same task as our
model in the previous study did, as figured out in §7.3.2, models like BERT can perform
remarkably well on frequent classifiers while relatively badly on infrequent classifiers. We
are also aware of how well human beings can do in choosing classifiers if we look at a
wider range of classifiers, especially those that are rarely seen. We, therefore, propose
another setting, where we first sample a certain amount of classifiers and then sample their
context accordingly. We refer to the experiments with the above two settings as Experiment
A and Experiment B, respectively, and detail each of them below.

Experiment A

In the first experiment, we randomly sampled 200 items from the test set of ccp. Subse-
quently, we manually filtered the noise from the sampled set, which results in a corpus
containing 186 items. We say a sample is a noise if:

1. the classifier word in the given context is not a classifier. For example, the word
“~” in the sentence “ftt ¥ 1> Z R #6 7E il ¥4 X - ” (ta zhéng ge shujia dou zai
ta nainai jia; He spent the whole holiday in his grandma’s house.) is a component of the
word “H~” (zhéngge; whole) rather than a classifier;

2. the sentence is not readable. Since one resource of the ccp dataset is the Chinese
social media, there is a certain amount of unreadable content that has failed to be
filtered out during pre-processing (see Peinelt et al. (2017) for more details).

We then recruited 4 native Mandarin speakers to fill classifiers given these 186 items. Three
of them have background in statistics and the rest one has background in computer science.

Experiment B

In the second experiment, we first sampled 100 distinct classifiers also from the test set
of ccp and, then, sampled 2 items for each classifier. After filtering the data by means of
the same way of experiment A, we obtained a corpus with 162 items. We observed that
there is more noise in this sampled corpus than the one in experiment A. This suggests
that the data for less frequent classifiers are of lower quality. Similar to experiment A, we
asked 4 native Mandarin speakers to accomplish the task. Two of them have background
in statistics and the other two have background in computer science.

188



12

7.4 STUDY 3: HOW WELL CAN HUMAN BEINGS CHOOSE CLASSIFIER FROM ITS
CONTEXT?

Accuracy (SD) Percent Agreement

Experiment A 70.97 (2.28) 67.92
Experiment B 41.82 (2.16) 47.22

Table 7.5: The results of human experiments of classifier selection. “SD” is the abbreviation
for “standard deviation”.

Metrics

We calculated the accuracy'? of each participant to compare the human chosen classifiers
and those in the sampled corpora. This also helps us to “evaluate” the human performance
in the same way as our models. In addition, to quantify how well each participant agrees
with each other, we also report the Percent Agreement (McHugh, 2012).

7.4.2 Research Questions

Recall that our primary goal is to obtain an impression on how well human beings can
accomplish the same task. Analogous to many NLP tasks, it is natural to expect that
humans can outperform any of our models. However, meanwhile, since we believe the task
of classifier selection is non-trivial, we did not expect humans could approach an extremely
high accuracy (e.g., 98%).

Additionally, considering that experiment B looks at infrequent classifiers, which might
also be hard for human participants. We expected human participants would perform
worse in experiment B than in experiment A in terms of accuracy. Moreover, we also
foresaw that participants have less agreement in experiment B than in experiment A.

7.4.3 Experiment Results

Table 7.5 charts the results of both experiment A and experiment B. To compare these
results with the performance of our models, we compared the accuracy in experiment A
with the accuracy in Table 7.3. Nevertheless, the accuracy in experiment B is not comparable
to those accuracy numbers in Table 7.3 as the data in the corpus of experiment B follows a
very different distribution from that of ccp. One metric that makes the comparison more
meaningful is the macro-averaged recall since it averages over all classifiers in the test set
and, for each classifier, it computes the fraction of classifiers that are chosen correctly by a
model.

For experiment A, the accuracy is 70.97% and it is surprising to see BERT receives 81.71%
(cf. Table 7.3) — a higher accuracy than humans. It embodies that our first expectation,
about humans defeating BERT, is rejected. One possible reason is that BERT was fine-tuned
on a subset of the target corpus while humans might not be familiar with the specific genre
language used in the corpus.

The mean accuracy of experiment B is 41.82%, which, in line with our expectation, is
much lower than that of experiment A. It also confirms that the task of classifier selection is

The term “accuracy” here means the matches between the classifiers chosen by the participants and those in the
corpora. This does not imply that a “mismatch” means “inaccurate”. In other words, a lower accuracy does not
always mean the participant did a worse job since there are possibilities that, given a context, multiple proper
classifiers exist.
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non-trivial for both algorithms and human beings. If we further compare this number (i.e.,
41.82%) with the macro-averaged recall of BERT, it is slightly higher than BERT’s 38.10%.
Although this is not a fair comparison, it somehow suggests that humans and BERT perform
at a similar level when it comes to choose proper infrequent classifiers. Our last research
question has also been validated to be true. That is, participants in experiment A have
much higher agreement than participants in experiment B.

Case Studies

To understand why human participants cannot defeat BERT and why experiment B obtained
a lower percentage of agreement among participants’ decisions, we looked into the sampled
test cases and did an error analysis. First, there are a certain amount of mis-uses of
classifiers, especially when on the general classifier “/1>”. For example, in the following
example (99), the subject mis-used the classifier “/}>” for the head noun “£%” (qidn; money).

(99) a. FAT AT RS, MR M — > B TE

womén de wangzhan, congwei zuo yi fén gidn de gudnggao

‘Our website have never spent money on advertisement.’

b, * Tl B W, MR — B TE .

womén de wangzhan, congwei zuo yi ge qgian de guanggao
As we have discussed in §7.3.2, our models encountered difficulties when predicting
classifiers that add information since the provided contexts do not offer enough information
for the selector to make predictions. We found that human beings have similar difficulties.

For instance, for the same head noun “AXfik” (yift; clothes), we found the following two
items from the two sampled corpora.

(1000 a FEHFE T IBE KK -
woO chuan lé na tao yifa
‘T wore that suit of clothes.’
b, HEF T A KR
wo chuan 1é na jidn yifa
‘I wore that piece clothes.”
(101) a ok T FEH — KR KR
ta géi le wo manmadn yi da dai yifu
‘He gave a package of clothes.’
b. Al T 3 — K E KR -
ta géi le wo manman yi da kuang yifa
‘He gave a basket of clothes.’
e ME T BEH — KRR -
ta géi le wo manman yi da xiang yifa
‘He gave a box of clothes.’
d. bk T F il — K& Kk -
ta géi le wo manman yi da bao yifu
‘He gave a bag of clothes.’
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In the example (100), both “#f & KR~ and “Hf £ KR~ are grammatically correct and
fluent Mandarin expressions. To decide whether it should be “a suite of” or “a piece of”,
we need information beyond the given context. Likewise, all classifiers in example (101)
are grammatically correct and fluent, but, without knowing what the container is, it is hard
to choose a classifier from “package”, “basket”, “box”, and “bag”. These two examples, in
aggregate, suggest that depending on what information is lacking, the candidate classifiers
could also be different. In other words, as what we have found in §7.3, the context adds a
certain amount of information but it is still not enough for deciding the exact classifier. For
instance, in example (101), as what we have found in §7.3, the context tells us someone
gives me a “set” of clothes, which singles out classifiers that indicate singularity (e.g., “/4”),
but does not tell us what kind of container this set of clothes are in.

At length, we have also observed a certain amount of cases, where multiple classifiers
can be used and these classifiers have a similar meaning. For example, the head noun “ 5
8" (z&ocan; breakfast) accepts multiple alternative classifiers, including “Ji” (dimn) as well
as “&” (can). There are possibilities that using these two classifiers could result in different
meanings, but the following two sentences have the same meaning:

(102) a2 T AR B RE — W RE -
wo chi le zaibéijing de zuihou yi duin zdocan
‘I had my last meal in Beijing’
b. 2T HIE W RE — & BE

wo chi le zaibéijing de zuihou yi can zdocan

This also implies that our current “evaluation” of algorithms and human performance
is not entirely unproblematic. A mismatch between the chosen one and the one in corpus
might because any of the following reasons:

1. the choice is inaccurate;

2. the context does not provide enough information for deciding a single classifier and
the information added by the chosen classifier is different from the reference one, but
both of them are grammatically correct;

3. there are multiple classifiers available for conveying the same meaning.

Apparently, it is problematic to view a mismatch caused by the second or the third reason
an “incorrect” choice. Therefore, in future, in order to better assess the performance
of each algorithm (as well as human beings), we are currently planning two large-scale
human experiments. One is another reader experiment to sufficiently explore, for each
context, how many alternative classifiers there are and what is the “preference” of these
classifiers. To assess an algorithm, it is reasonable to evaluate how well an algorithm can
mimic such a preference. A similar paradigm has been done in the task of referential form
selection (Castro Ferreira et al., 2016). The other is a reader experiment. Given a context
and multiple alternative classifiers, each participant will be asked to decide the readability
or the acceptability of each combination (i.e., a combination of a context and a classifier).

7.4.4 Discussion

In this study, to understand how hard the classifier selection task is for human beings,
we conducted a human experiment to ask subjects to accomplish the same task as the
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models in §7.3. We found that the best performed model BERT defeats human beings
in terms of accuracy. Just like BERT, human beings also met difficulties on classifiers
that add information. Finally we argued that the current evaluation using accuracy is
problematic because many contexts could have multiple “proper” classifiers whereas the
current evaluation views the choices that are different from corpus as “incorrect” choices.

7.5 Summary

In this chapter, we first introduced and evaluated a realisation engine for Mandarin in the
tradition of simpleNLG (a simple-to-use, controllable and extendable realisation engine
developed by Gatt and Reiter (2009)). In the course of building simpleNLG-zH we found
that, due to the fact that Mandarin is an analytic language, realisation in Mandarin needs
much less morphological operations and much more syntactic operations compared to
English. We hope simpleNLG-zH can be a good starting point for work on other Sinitic
languages, such as Cantonese.

Another characteristic we found is that, while conducting surface realisation, many
elements have multiple alternatives, such as particles, classifiers, aspect markers, etc.
Therefore, in the last two studies in this chapter, we picked one of these elements as an
example, namely classifier. Specifically, in the second study, we attempted to tackle the
task of classifier selection using a number of data-driven techniques. As expected, BERT
achieved remarkably good performance even it was not fine-tuned on the classifier selection
dataset. Its performance was further boosted once fine-tuning was done. Moreover, we
also found that all these data-driven models met a similar problem: it is hard for them to
decide classifiers that add information to the resulting NPs.

Lastly, we examined how hard the classifier selection is for human beings. We asked
participants to accomplish the same tasks as the one the above models were aiming at.
Surprisingly, we found that BERT performs better than human beings. To understand why,
more experiments are needed.

As discussed in §3.4 and §7.2, Mandarin poses many difficult choices for the construction
of a good surface realiser. The current simpleNLG-zH leave these choices for users. In
this chapter, we took the choice of classifiers as an example, but there are still many
other issues we have not addressed. For example, simpleNLG-zH provides an API for
the “42” construction. It allows users of simpleNLG-zH to decide whether to use it or
not. On the one hand, the current version of simpleNLG-zH lacks restrictions of when
the “1” construction should be avoided. In light of C. N. Li and Thompson (1989), “J&”
construction may only be used in the context where the verb expresses "settlement” of, or
action upon, the object. Building on this idea, Ye et al. (2007) found that it is generally used
with verbs that are high in transitivity, but is not used with verbs that express states or
emotions (e.g., love and miss). On the other hand, in many cases, for expressing a certain
meaning, using or not using “¥1” construction are both grammatically correct. For example,
the following two sentences are expressing the same meaning, but the referring expressions
“IX=7KF" (zhesanbénshi; the three books) are placed in different positions:

(103) a. FEX=AFBET
wobdzhesanbénshiimaile
I sold the three books.
b. WETX=KH
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womailezhésanbénsht
I sold the three books.

Nevertheless, it has been suggested that, analogous to the choice of classifiers, Mandarin
speakers would choose between (103-a) and (103-b) differently given different contexts. A
corpus study by J. Chen et al. (2021) suggested that the “2” construction is preferred if
the referring expression is discourse-old (i.e., it has been mentioned in previous discourse)
or animate or long (3 syllables or more). How the use of the “I!” construction can be
decided by the realiser is worth exploring.

Another example is the decision of the order of multiple pre-modifiers. The current
simpleNLG-zH roughly breaks pre-modifiers into quantitative adjectives, colour adjectives
and classifying adjectives, and orders them in the order of quantitative adjectives, colour
adjectives and classifying adjectives. This simple rule works fine if the number of pre-
modifiers is relatively small. It is interesting to see whether it still works if there is a large
number of pre-modifiers and how well data-driven approaches can work on this task.
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CHAPTER 8 I

Conclusion

8.1 What have we learnt?

We summarise the lessons that we have been able to learn from the studies described in this
thesis. Some of these lessons are specifically about Mandarin, whereas others are universal
across languages (or at least, Mandarin and English). Rather than aiming for completeness,
our summary will focus on a few of the more striking findings.

8.1.1 How do Mandarin Speakers Use Noun Phrases?

We have looked at two kinds of NPs: Referring Expressions (REs) and Quantified Expres-
sions (QEs). We briefly address each of these in turn.

One-shot Referring Expressions

One-shot REs aim to identify their intended referent entirely within one NP, that is, without
relying on the linguistic context of this NP. Although one-shot REs is a topic to which a
lot of theoretical and computational work has been devoted (e.g. Dale and Reiter (1995),
Engelhardt et al. (2006), Engelhardt et al. (2011), Koolen et al. (2011), Krahmer and van
Deemter (2012), Paraboni et al. (2017), and Pechmann (1989), van Deemter (2016)), we have
argued in Chapter 4 that the existing conceptual apparatus for thinking about reference is
not as precise and complete as it should be.

To fill this gap, we proposed a formal perspective on reference, in the form of a set of
definitions and an accompanying annotation scheme. Many of these definitions concern
specific kinds of over-specification. For example, we define numerical over-specifications to
be NPs that are longer than necessary without containing any superfluous property (see
§4.4.2). Furthermore, we define nominal over-specifications to be NPs in which the TYPE
attribute is the only superfluous attribute (also see §4.4.2).

To show the benefits of this approach, we analysed a Mandarin RE corpus MTUNA and
an English RE corpus ETUNA and compared the use of REs in them. We found that there
was no difference between Chinese and English in the use of over-specification. However,
when differences between kinds of over-specification were taken into account, then various
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differences between these languages came to light. For example, Mandarin speakers use
more TYPEless REs than English speakers, possibly because Mandarin allows zero head
nouns in noun phrases.

In addition to various kinds of over-specification, the new scheme contains concepts
such as wrong (i.e., incorrect) specification and under-specification. Focusing on the latter,
previous studies had reported that only about 5% of human-produced REs are instances of
under-specification (Ferreira et al., 2005; Koolen et al., 2011; Pechmann, 1989). Consequently,
none of the algorithms we examined (and many previous work, e.g., van Deemter, Gatt,
Sluis, et al. (2012) examined) for the generation of one-shot REs (e.g. Dale (1989) and Dale
and Reiter (1995)) ever produce under-specified REs (when these can be avoided). In stark
contrast with this received wisdom, we found that both MTUNA and ETUNA contained
as many as 15% REs under-specifications. This suggests that future work on REG should
start to pay proper attention to this hitherto overlooked phenomenon. One approach that
is worth trying is the rational speech act model which could produce under-specification if
a referent is salient enough (see §2.2).

Referring Expressions in Context

When REs are placed in (linguistic) contexts, Mandarin speakers often choose to not express
them overtly. For example, in the conversation:

(104) a. RENK=TME?
Did you see Zhangsan?
b. BLT-
[I] saw [him].

REs in both subject position (i.e., I) and object position (i.e., him) are dropped, which,
for Mandarin speakers, is more pragmatically natural than the one where both pronouns
are not dropped (i.e., #&& WA T'; I saw him). REs of this kind is named Zero Pronouns
(ZPs; C.-T. J. Huang (1984)). In NLP, ZPs have been widely studied from the perspective
of resolution (Yin, Zhang, et al., 2017; Yin, Zhang, Zhang, et al., 2017; Yin et al., 2018).
Nevertheless, modelling the use of ZPs has not attracted much attention. In §5.2, we built
computational models for investigating contributing factors for the use of ZPs. We found
that factors, such as recency, syntactic position, and discourse status, that proved to affect
pronominalisation also affect the use of ZPs in Mandarin.

Quantified Expressions

In addition to referring, another prime function of NPs is quantifying, such as the following

QEs:

(105) a. some chairs
b. most students

To understand how English and Mandarin speakers use QEs, we conducted a series of
elicitation experiments. In these experiments, our participants were free to describe a
visual scene in whichever way they want, using as many sentences as they want, and using
any sentence pattern that they choose. Concretely, given a visual scene, we asked each
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participant to say, for example, “All objects are square. Half of the squares are blue.”. We called
these descriptions Quantified Descriptions (QD), each of which consists of multiple QEs.

These experiments result in an English QD corpus QTuNa as well as a Mandarin QD
corpus MQTUNA. We analysed the QDs in QTuNA and MQTUNA. Generally speaking,
we found that the domain size is a key factor that affects the completeness (i.e., whether
a description can let a reader fully reconstruct the scene), the correctness (i.e., whether a
description says everything correct), and the vagueness (i.e., whether a QD uses any vague
quantifier, e.g., most and many) of the generated QDs. To be more specific, there were fewer
logically complete QDs, fewer correct QDs and more vague quantifiers in larger domains
than smaller domains. However, we found that speakers did not produce longer QDs in
larger domains. Additionally, both English and Mandarin speakers were likely to mention
shape in position A and to mention colour in position B. For example, they were more
likely to utter “half of the squares are blue” rather than “half of the blue objects are squared”.

By comparing QDs in two corpora, we observed that Mandarin speakers were more
likely to produce longer QDs, incomplete QDs, incorrect QDs, and QDs that contain more
vague quantifiers than English speakers. Additionally, for each QE Q(A, B), Interestingly,
we also found Mandarin speakers frequently drop the phrases in position A, i.e., saying
“—PRIIH)” (yibanshihongsede; half are red) instead of saying “—FHIEJEZLLHY” (yi-
bandettxingshihongsede; half of the objects are red) if what this phrase describes has been
mentioned in the previous discourse or is the property shared by all objects.

8.1.2 Lessons for Modelling of Noun Phrases in Mandarin

We have tested computational models for one-shot Referring Expression Generation (REG),
Referential Form Selection (RFS), the use of Zero Pronouns (ZPs), surface realisation, and
the use of classifiers in Mandarin. Although we have not yet tested quantified description
generation (QDG) models in Mandarin, we have discussed potential ways of doing so.

One-shot REG

The task of one-shot REG asks algorithms to produce REs that are human-like. Although
Mandarin RE corpora, such as MTUNA, have been built, no work has been done for
building and assessing Mandarin one-shot REG models. In this thesis, we tested three
classic REG algorithms, including the Full Brevity Algorithm (FB), the Greedy Algorithm
(GR), and the Incremental Algorithm (IA) on the MTUNA dataset and compared the results
with their results on ETuNA. We found that, unlike English, IA is no longer always the
winner. Precisely, IA merely won in the simple domain (i.e., the furniture domain), but, in
the complex domain (i.e., the people domain), it did not work better than the FB algorithm,
which is an algorithm that takes brevity as its priority. We also leant that a good Mandarin
REG algorithm should include probabilities to model TYPEless REs and take the syntactic
position into consideration.

RFS and Modelling ZPs

Both RFS and Modelling ZPs are sub-tasks of REG in context. REG in context is a task to
generate REs given their linguistic context. In Chapter 5, we started with building models
for ZPs based on the Rational Speech Act (RSA) model, which had proved to work well on
pronominalisation in English (Orita et al., 2015). It assumes that Mandarin speakers tend to
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use a ZP if the referent is salient enough for successful communication. The experimental
results suggested that the RSA works respectably on modelling the use of ZPs in Mandarin
compared to a strong rule-based baseline (Yeh & Mellish, 1997).

When modelling full speakers’ behaviour (i.e., RFS which asks models to choose from
ZP, pronoun, proper name, and description), we examined both neural-based models
and feature-based machine learning models and found that neural-based methods work
better. By comparing different neural models on RFS, we found that, for both English
and Mandarin RFS, using a single RNN can often obtain a remarkably good performance
compared to those with much more complex neural architectures and, for only Mandarin
RFS, incorporating pre-trained word embeddings (i.e., SGNS) or language models (e.g., BERT)
can significantly help models learn more useful linguistic information, and, consequently,
improve the performance. One major disadvantage of using neural models is that they
are considered to be black-boxes and it is hard to link their behaviours to corresponding
linguistic theories. To address this issue, we conducted interpretability studies using
probing classifiers. From the probing studies, we learnt that neural models can learn
certain information, including referential status, syntactic position, and recency, but failed
to learn information that requires the model to have an overall understanding of the whole
document or the whole corpus.

Quantified Description Generation

As aforesaid, we built two QD datasets: QTUNA and MQTUNA. To mimic the QD in these
corpora, we designed two QDG models following a similar paradigm as modelling the
production of REs, i.e., viewing the task as a step-wise addition of descriptive information
that narrows down an initial set of possibilities. To examine them on the task of English
QDG, we designed two evaluation protocols. One is to ask human judges to judge the
quality of the machine-generated QDs. The other is to ask participants to re-produce
scenes given machine-generated QDs. The evaluation results suggested that our models
can produce QDs that are both natural and useful.

Although we believe these algorithms should be universal across different languages,
to make them produce Mandarin QDs, adaptation is needed. We argued that a workable
Mandarin QDG model should have abilities to decide whether to express plurality explicitly
or implicitly, to handle more vague quantifiers, and to decide when to stop in accordance
with the characteristics of Mandarin QDs.

Surface Realisation

Surface realisation is the very last stage of an NLG system. It is responsible for mapping
the plan (i.e., the “plan” from earlier stages) to its well-formed surface form. No extendable,
wide-coverage, and easy-to-use surface realiser has been developed. To fill this gap, we
built a Mandarin realisation engine, namely simpleNLG-zH, following the tradition of
simpleNLG. In the course of building this software, we learnt that, compared to realisers
for western languages, a Mandarin realiser should have fewer morphological operators
and more syntactic operators due to the fact that Mandarin is an analytic language.

In addition, we also argue that a good Mandarin realiser should be able to handle
situations where a component (e.g., plural maker, particle, head noun, etc.) is optional and
where a component (e.g., classifier) has multiple alternatives. To understand this better,
we dived into one specific component: classifier. We then built classifier selection models
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based on either rule-based or neural-based (i.e., BERT) models. We learnt that, although the
rule-based solution could already achieve good performance, BERT can further dramatically
increase the performance, which performed even better than that of human beings.

8.1.3 Coolness

One of our research questions in this thesis is to validate the idea of coolness. Recall that
we introduced three interpretations of coolness in §3.1.

”

1. The first interpretation is from C.-T. J. Huang (1984), where the concept of “cool-hot
division was first introduced. It is only about anaphora and suggested that anaphora
in Mandarin is often pragmatic naturally dropped. In this section, this interpretation
is referred as [1];

2. The second one suggests that, in addition to anaphora, many other categories in
Mandarin are also not expressed obligatorily, e.g., definite markers, plural markers,
and aspect markers and so on. We refer it as [2].

3. The last interpretation is linked to the idea of the clarity-brevity trade-off in NLG. It
hypotheses that Mandarin speakers prefer brevity to clarity. We refer it as [3].

In what follows, we list pieces of evidence we found that support coolness and that
oppose coolness. For each item, we use the notations introduced above to link each piece of
evidence to one of the three interpretations. Additionally, we also codify the subject matter
with each piece of evidence links to. Concretely, [RE-one] is the one-shot RE, [RE-context] is
the RE in context, [QD] is the QD, and [R] is any issue that is related to surface realisation.
We then marry the code that refers to an interpretation to the code that refers to a subject
matter. For example, [1-OR] means the current evidence is related to the first interpretation
of coolness and is about one-shot REs. Also, note that we also include findings from
previous research that relates to coolness. Evidence that supports coolness includes:

¢ [2-RE-one] van Deemter et al. (2017) found that determiners and number markers are
not used frequently in Mandarin REs, which makes 76.18% of REs in MTUNA are
bare nouns;

* [3-RE-one] Mandarin speakers used more TYPEless REs than English speakers;

* [3-RE-one] Unlike English, for Mandarin, the Incremental Algorithm did not always
outperform the Full Brevity (an algorithm that always produces the shortest RE)
algorithm;

* [1-RE-context] 13.6% of REs in the OntoNotes dataset (a commonly used Mandarin
corpus) are ZPs. The task of RFS needs to take this new category (in addition to the
pronoun, proper name and description) into consideration.

* [1-QD] The anaphora in the position A of QEs in the form of Q(A, B) are often
omitted;

¢ [2-QD] The singularity/plurality of a QE was often expressed implicitly.

1 Note that although in our task definition of RFS, we considered not only anaphora but also cataphora, we still
regard it as evidence for the first interpretation of coolness.
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* [3-QD] Mandarin speakers produced less complete QDs than English speakers;
¢ [3-QD] Mandarin speakers used more vague quantifiers than English speakers;

* [2-R] Many components of Mandarin NPs (e.g., plural markers, definite makers, and
aspect markers) are optional. Our surface realiser is able to handle them.

Evidence that opposes coolness includes:

* [3-RE-one] There was no significant difference between the use of over-specifications
and under-specifications;

¢ [3-QD] On average, Mandarin speakers produced longer QDs than English speakers.

As we can see from the above two lists, all the evidence that we collected appears to
support the first two interpretations of coolness ([1] and [2]). As for the third interpretation
(i.e., [3]), it consists of two parts: Mandarin speakers prefer brevity and violate clarity.
Interestingly, “preferring brevity” is valid for the use of REs but is not valid for the use of
QDs. Whereas, “violating clarity” is valid for the use of QDs, but is not valid for the use of
REs. Recall that the primary assumption behind coolness is that Mandarin relies more on
communicative context for disambiguation compared to languages like English. Therefore,
one possible explanation of the lack of evidence for [3] is that since both the above two
pieces of counter-evidence are about one-shot production of NPs, as we have discussed in
§4.4.7, contexts of them? are overly simple for speakers to rely on.

We need to note that one limitation of our discussion in this section is that the way in
which our experiments were set up was not perfect from a point of view of comparing
languages. In all cases, the English corpus was collected and studied first, and the
Mandarin corpus was collected after that. Although both endeavours always followed
the same elicitation methodology and were based on broadly the same set of stimuli (i.e.,
set of input scenes), there nonetheless were experimental details that differed across the
two elicitation experiments. These details include the precise choice of situations (i.e.,
which exact scenes were shown to participants?), the order in which these situations were
presented to participants, and the demographics of participants. It is possible, though
perhaps not likely, that if these conditions are fully controlled, a different picture may
emerge, potentially also enabling a different verdict on questions surrounding coolness.

8.1.4 The Choice of Computational Methodology

As was explained in the Introduction to this thesis, our primary aim has been to use
computational algorithms to shed light on the ways in which Mandarin speakers use Noun
Phrases. Thus, our main contributions have been in what we have called Theoretical NLG
(see §1.5, where “T” stood for theoretical NLG and “P” for practical NLG).

Building computational models of the production of Noun Phrases involves different
tasks (§1), depending on the kind of Noun Phrase involved. In building such models, we
have used whatever computational method seemed best suited for the task. For example,
we have used rule-based algorithms for one-shot referring expression generation, modelling
the use of zero pronouns, quantified description generation, and surface realisation; we
have used feature-based Machine Learning for modelling the use of zero pronouns and

The context of a one-shot RE is the distractors in the given scene.

200



8.2 FUTURE WORK AND OPEN QUESTIONS

referring expression generation in context; we have used (neural) Deep Learning for referring
expression generation in context, and for modelling the choice of classifiers. Our reasons
for choosing these particular methods for these particular tasks are broadly familiar: neural
methods, for example, are particularly called for when a huge amount of data is available,
and when the problem is not very well understood yet.

In our own work, we have often constructed systems that combine different computa-
tional methods. This is perhaps clearest in our work on Surface Realisation (§7). Although
this work has mostly resulted in rule-based algorithms, our study of classifiers (which is
a part of Surface Realisation) has shown how Deep Learning, judiciously used, can add
further sophistication to an otherwise rule-based system. Our reason for using neural
methods for modelling classifier choice was that classifiers are highly frequent, so a very
large amount of relevant data was available to us, and this helped neural models to do well;
and although sensible rules for classifier choice had been suggested by linguists, it was
difficult to make such rules sufficiently precise that a computer algorithm can use them.

In other areas of our work, the balance between computational methods was different.
In particular, we found that neural models did not always do very well when performing
End2End generation. For example, although our work on referential form selection (§5.3
and §5.4) suggested that neural models perform better than rule-based systems, our recent
work on generating full referring expressions (Same et al., 2022) suggested the opposite: we
showed there that existing rule-based systems tend to perform at least as well as End2End
neural REG models. Probably, neural methods did not work so well for REG because REG is
closely tied up with choosing the semantic content of a text, (e.g., choosing what properties
of a referent to mention), causing neural models to do less well. The idea that neural
methods struggle to choose appropriate semantic content became commonplace when
Reiter (2018a) and Rohrbach et al. (2018) pointed out that neural NLG (Dusek & Jurcicek,
2016) systems sometimes “hallucinate”, i.e., producing contents that are not present in the
inputs or that are inconsistent with these inputs.

The general question of what scientific method best suits a particular research question
or research task is still far from completely resolved, of course. However, in view of the
limited area of work described in this thesis, we expect that the kind of “hybrid” approaches
that we proposed in our chapter on Surface Realisation, which combines symbolic and
sub-symbolic methods, will increasingly be used in both practical and theoretical NLG,
and in Natural Language Processing more generally.

8.2 Future Work and Open Questions

Given the lessons summarised above, we first came up with two recommendations for
potential future work. As has been pointed out in the previous section, one recommendation
is to conduct fully controlled language comparison studies on the subject matters we have
looked at in this thesis. The other is to conduct elicitation experiments where NPs are
placed in richer contexts and to analyse the results with the focus on validating the third
interpretation of coolness (i.e., [3]).

In what follows, we discuss potential future work and open questions for each task in
this thesis.
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8.2.1 One-shot REG

In §4.4, we distinguished numerical over-specification from other types of over-specification
as none of the properties of a numerical over-specification is superfluous. In future, it
would be interesting to conduct experiments to explore the following questions:

1. When speakers over-specify, are they more likely to produce expressions that are
“built around" (see §4.4 for its formal definition) minimal description or ones that are
built around numerical over-specification?

2. Since numerical over-specifications use more properties, will they help readers to
identify the target referent faster than by means of real over-specifications (Paraboni
etal., 2017)?

3. What if numerical over-specifications use TYPE for distinguishing the target objects?

4. Do our new perspective and findings in §4 still stand on more complex and realistic
references than those in MTUNA and ETUNA?

In §4.5, we explained the reason why there are many TYPEless REs in the people domain of
MTUNA by citing Lv’s hypothesis (Lv, 1979), suggesting that if omitting the head noun
results in a distinguishing description, then the head noun is omissible. Nonetheless, we
also mentioned an alternative explanation: animacy, suggesting the TYPE is more likely
to be dropped for animates than inanimates. We plan an experiment to confirm which
explanation is accurate.

In §4.4.5, we sketched possibilities for extending our new perspective of specifications
to plural REs. Building on this, we will detail an annotation scheme for over- and under-
specified plural REs and use it to analyse plural REs in ETUNA and MTUNA.

Regarding building a better Mandarin one-shot REG model, we plan to

1. Consider advanced non-deterministic REG models, such as RSA and PRO (see §2.2.1
for more details), to model non-negligible TYPEless REs;

2. Model plural REG in Mandarin. One factor that needs to be considered is that a bare
noun in a Mandarin RE could either refer to a single referent or multiple referents
since Mandarin can express plurality implicitly (see §3.4 for more discussions);

3. Develop an evaluation metric that can overcome the shortcomings of DICE (see
§4.5.5).

8.2.2 REG in Context

When modelling RFS selection in §5.3, we pointed out that the webNLG might not be a
good corpus to study the use of REs in context. In future, we will explore or construct
REG (recall that RFS is a sub-task of REG) datasets that contain natural and realistic use of
REs in English so that we can make a better comparison between REs in Mandarin and in
English.

Regarding constructing better Mandarin (and English) REG in context model, we are
interested in models that:
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Figure 8.1: A scene of domain size N = 4 from QTUNA.

1. Take deictic pronouns (i.e., I and you) and their referents into account. Deictic
pronouns are often referring to participants of conversations or writers of documents.
There is often no proper name or description in their reference chains;

2. Marry neural techniques with the RSA. Recently, there has been work on building
so-called NeuralRSA models (Andreas & Klein, 2016; Fried et al., 2018; Monroe et al.,
2017; Monroe et al., 2018). We plan to apply this idea to the task of REG in context;

3. In this thesis, we only examined the RFS task. We plan to move our focus from RFS
to REG.

Regarding interpreting NeuralRFS (and NeuralREG) models, we plan to:

1. Conduct a more fine-grained analysis of how these models handle anaphora and
cataphora (i.e., REs whose meaning are determined or specified by later expressions);

2. Consider other model interpretation techniques other than probing classifier;

3. Design new probing tasks on the basis of other factors that could influence RFS, such
as animacy, competition and positional attributes (see Same and van Deemter (2020)
for an overview).

8.2.3 Generation of QDs and QEs

Our primary plan is to build Mandarin QD generation systems using our quantified
description generation algorithms in §6.4 and evaluate the systems on mQTUNA. We listed
a number of potential issues that need to be aware of when applying the algorithms to
Mandarin in §6.4.8. Later on, we consider the following open questions. Note that since this
subject matter has not been sufficiently explored before, the open questions we discussed
here are less language-dependent.

How efficiently do speakers use quantification? Speakers in our corpus were frequently
less than optimally “efficient” in their use of quantification, saying more than was strictly
necessary for describing the scene. An extreme example is a QD for the scene in Figure 8.1
where some speakers use as many as three quantifiers (i.e., “Half the objects are squares.
Half the squares are red. Half the circles are red.”), whereas others use only one (i.e., “All
possible combinations are shown.”) Another type of example arises when a scene of size
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N = 4 can be described saying “There are red circles and blue squares” (using two plural noun
phrases), in which case the description “There are two red circles and two blue squares” could be
regarded as inefficient. Investigating the mechanisms that allow speakers to be maximally
efficient — and the conditions under which these mechanisms are actually deployed —is a
rich area for further research. Once again, there is an analogy here with research on the
production of REs, where researchers have studied under what circumstances speakers
tend to “over-specify" a referent (see Chapter 4). Perhaps the main question raised by these
phenomena is whether speakers are “inefficient” because they cannot help themselves, or
to help the reader understand the description (i.e., Bell (1984) and Coupland and Jaworski
(2008)). Analogous questions regarding quantification have yet to be answered.

How to capture variation in the corpus? Substantial differences between speakers are
known to exist in many other areas of language production (e.g., Gibbs and Van Orden
(2012), Holden et al. (2009), Horton and Keysar (1996), and van Deemter (2016)). Such
differences are likely to affect all the issues discussed in Chapter 6. One approach would
be to investigate how key properties of the descriptions vary between different types of
speakers, looking at differences in level or type of education for example. A different
approach would be to design a probabilistic generator, which generates all the different
types of descriptions that are seen in the corpus but take into account their frequencies.
The degree of fit between such a probabilistic model and the corpus could be measured
using the generalisation criterion methodology of Busemeyer and Wang (2000), analogous to
the probabilistic modelling of reference in van Gompel et al. (2019).

How to quantify over more challenging types of scenes? The scenes on which our work
has focused are relatively simple. How does quantification work if the domain size is further
increased? For example, one might expect to find that, similar to the findings of Chapter 6,
the participants would produce even more vague quantifiers, more incompleteness, and
so on. Scenes could also be populated by more naturalistic objects, standing in more
naturalistic situations (e.g. a person walking a dog). Evidently, naturalistic scenes permit
many more than 2 attributes, each of which will tend to have more than 2 values, and so
on. Naturalistic scenes threaten to undermine one of our ideas on which our algorithm
rests, namely to start computing the set of all possible scenes (i.e., constructing S), and
to work by chipping away from that set. Suppose one wants to describe the people in a
football stadium, saying something like:

(106)  Nearly everyone in the stadium was wearing the Liverpool colours.

It is unclear what were all the possibilities that this description is trying to rule out since
it is difficult to determine all the things people might be wearing. Furthermore, it seems
likely that the aim of the utterance is to state that the situation in the stadium runs counter
to normal expectations — an aspect of quantification that has been noted widely in the
literature (Moxey & Sanford, 1993), but was not covered by our models so far.

One possible solution is to abandon the idea of starting from the complete set of all
possibilities, starting instead from a suitably sized sample of possible scenes, possibly
gleaned from other football matches in the same stadium, proceeding as before in other
ways (e.g., terminating when all distractor scenes from the sample have been ruled out).
Note that this approach would be sensitive to constraints and statistical regularities that
the speaker and hearer are attuned to. For instance, the sample would tend to bear out the
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regularity that if one’s left shoe is brown then so is one’s right shoe. More interestingly,
a large-enough sample of scenes could go a long way towards embodying our “normal
expectations” regarding the outfits that people in stadiums normally wear, including that
expectation that the Liverpool colours do not normally dominate to such an extent.

8.2.4 Surface Realisation

As we have pointed out that simpleNLG-zH assumes that many choices are made outside
the system (i.e., by a person or by another component of the NLG system). These include
the choice of classifiers, the use of particles (such as “H]” (de) and “ " (le)), the choice
between different negation words (“/\” (btt) or “I%” (méi)), the use of aspect markers, and
ordering the modifiers and specifiers (see more details in §7.2.3). We tried to let data-driven
methods help the choice of classifiers in §7.3. The evaluation suggested that BERT can
accomplish the task with a remarkably good performance and can even defeat human
beings (see §7.4). In future, we will be concerned with other choices, including the use of
particles, negation words, aspect markers, and so on.

8.3 Concluding Remarks

Focusing on the “coolness” hypothesis, this thesis has studied three noun phrase generation
tasks, i.e., one-shot referring expression generation (§4), referring expression generation
in context (§5) and the quantified description generation (§6), and the realisation of noun
phrases (§7). We identified considerable evidence supporting the coolness hypothesis.
Nevertheless, we also found a handful of evidence against the hypothesis, suggesting that
Chinese speakers are not always more brief than English speakers (see §8.1.3). We argued
that, to say the last word in the coolness hypothesis, there is a need for further language
comparison experiments on multiple different languages (rather than merely English and
Chinese).

We hope this thesis can pave the way for further computational research on other
phenomena link to the coolness hypothesis, such as discourse markers, aspect markers,
definiteness and so on (see §3.1 and §8.2) because prima facie evidence suggests that these,
too, are linguistic phenomena where coolness plays an important role, but where one PhD
project did not suffice to do them justice.
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APPENDIX A I

Syntax of the Chinese Noun
Phrase: a Brief Synopsis

In this section, we introduce the grammar of Mandarin Noun Phrases (NPs). Our review
mostly follows the book: The Syntax of Chinese (C.-T. J. Huang et al., 2009), emphasising
points that are of particular relevance to this thesis. Note that since the focus of this thesis
is the NP, the grammar of other types of phrase (e.g., verb phrase) or structures beyond
phrase level (e.g., passive construction, ba construction, and so on) will not be covered in
this section. ! Also note that since most concepts discussed in this section are about all
Chinese languages rather than Mandarin specific, in what follows, we will use the term
“Chinese” to refer to the language we are discussing.

A1 Categories

We start by talking about the “units” in Chinese NPs. Then, the question is what is the units
in Chinese? There has been a considerable amount of evidence suggesting that Chinese is
a morpheme-based language rather than a word-based language. Note that, unlike Western
Languages, in Chinese, a morpheme is often a character. The meaning of a Chinese word

BB H2 gy

is often the composition of its morphemes. For example, the meaning of the word “351¢

(zthua; purple flower) is the composition of “48” (zi; purple) and “4£” (hua; flower). Indeed,
there are exceptions, where the compositionality is lacking. The combination of “#L”
(hong; red) and “4£” (hua; flower) is not “red flower”, but “saffron” (i.e., a kind of medicine).
Nevertheless, in this thesis, we use “word” as the unit of Chinese. This is because Chinese
has derivational morphemes but lacks inflectional morphemes. > This results in the fact
that Chinese is an analytic language, i.e., a language that has no inflectional morpheme to
convey grammatical relationships, such as grammatical agreement or morphophonemic
and paradigmatic alternative (Arcodia & Basciano, 2017; Packard, 2000). For example, in

1 §7 provides a brief introduction of structures other than the NP structure in order to build a Mandarin surface
realiser.
2 English is mostly analytical but less analytic than Chinese.
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SYNTAX OF THE CHINESE NOUN PHRASE: A BRIEF SYNOPSIS

Gender /Person Singular Plural

1st Person Fwo AT womén
2nd Person /R ni YRA T nimén
3rd Person + Male 8 ta 47 tamén
3rd Person + Female It ta 17 tamén
3rd Person + Neutral Y ta Efi] tamén

Table A.1: List of pronouns in Chinese.

Chinese, there is no need to mark verbs that are third-person singular. Therefore, in this
subsection, we introduce the basic word categories in Chinese NPs. It is also worth noting
that we hereby only introduce the categories that are parts of NPs, categories such as verb,
aspectuality, and clause-typer will not be covered.

A.11 Noun

The Noun plays a central role in an NP. One characteristic of Nouns in Chinese is that they
cannot be modified by the negation morpheme “/” (bwy; not), such as:

(107)  * A~ HE
bt xinwén
not news

Such a characteristic has been used to tell the difference between Nouns and Verbs, namely
bu-test (Y. Li, 1997).

A.1.2 Pronoun

Pronouns in Chinese are used in a similar way as in English. The form of a pronoun
changes with respect to gender, plurality, and person. Table A.1 lists all pronouns in
Chinese. Note that the gender is marked only in the written form.

A.1.3 Localiser

One special type of word in Chinese appears when describing the location of an object:

(108) EET L
zai zhuozi shang
on the table

Such information is always expressed by using the prepositional phrase in English (i.e.,
“on the table”), but, in Chinese, the meaning of “on” is expressed by a localiser “ £.” (shang)
rather than the preposition “7£” (zai). There has been a long-term argumentation towards
the true category of localisers. Candidates include nouns, sub-class of nouns, or being as a
separate category. Following the suggestion of C.-T. ]. Huang et al. (2009), in this thesis, we
view localiser as a separate category.

208



A.1 CATEGORIES

There are two types of localisers: monosyllabic localisers and disyllabic localisers. For
example, the disyllabic version of “ £-” is “ F[fi”. Although they have the same meaning,
practically, disyllabic localisers allow particle “)” (de) (e.g., expression (109-a) and (109-b))
while monosyllabic localisers do not allow it (e.g., expression (109-c) and (109-d)).

(109) a. FEETF LM

zai zhuozi shangmian
on the table

b. ST B LW
zai zhudzi de shangmian
on the table

¢ HEHETL
zai zhuozi shang
on the table

d. *#ET K L
zai zhudzi de shang
on the table

A.14 Adjective

Unlike most western languages, a Chinese adjective can function as a predicate without the
help of a copular verb. 3 Or more precisely, it rejects the copular “s&” (shi; be). For example,
the grammatically correct sentence (110-a) contains no verb where the adjective phrase
“IR 5" (hén pidoliang; very beautiful) acts as a predicate on its own, and it becomes
un-grammatical when a copular is inserted (i.e., the sentence (110-b)).

(110)  a. fift R =R
ta hén piaoliang
She is beautiful.
b. *f & 1R ER
ta shi hén piaoliang
(lit.) She is very beautiful.

Although, as shown in example (110-a), a Chinese adjective can act similarly to a verb
(phrase), there are still significant differences between adjectives and verbs. One major
difference is related to the following use of adjectives: when a sentence is describing a
situation where there are two participants, in order to modify one of the two participants,
an adjective needs to be introduced by a particle “X” (dui). For example, the use of the
verb “J& A" (shihé; suit) and the adjective “&1&” (héshi; suitable) is different:

(111)  a. XA TAE X AR 1R A8
zhege gongzud dui ni hén shihé
This job is very suitable for you.
b. X4 THE R ER IR
zhege gongzud hén héshi ni

3 Note that not all adjectives are predicative.
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This job suits you very much.

c X TAEIR &1 IR
zhege gongzud hén shihé ni
This job suitable you very much.

Either example (111-a) or example (111-b) is grammatically correct, but the example (111-c)
is not.

Another interesting use of adjectives relates to the use of reduplication patterns among
disyllabic predicative words in Chinese (Zhu, 1982). Specifically, the reduplication pattern
for verbs is:

AB — ABAB,
such as “f& " (jidnch4; check) — “IE A" (jidnchajidnchd; check), while that for adjectives
is:

AB — AABB,

Ve

such as “H#.” (jiandan; simple) — “fE & B H” (jinjidandandan; simple). *

A.1.5 Preposition

The prepositions in Chinese include “Z T (zhiyq; as for), “KX T (guanyw; about), “ MW"
(cong; from), “45” (g&i; to/for), “TE” (zai; at), “[A]” (xiang; toward), “¥” (b&), “#%” (bei)°, and
so on. In addition to the usages that are similar to English prepositions, propositions in

Chinese have three other characteristics.
First, “Z2T” and “XT” have to occur with the NP in a pre-subject position:

(112)  XTXHE, MilSgshed T .

guanyu zhe jianshi, tamén yijing taolun guole

Regarding this issue, they already discussed (it).
Second, “48”, “7£” and “[r]” can act as verbs:
(113) b T o —3 8.

ta géile wo yiba jian

He gave me a sword.

1nyrr

In this example, “45” (g&i; to/for) is expressing the meaning of “give”. Last, “{8” and “#¢”
are used to build “3f)” construction and passive construction.

A.1.6 Functional Categories

In line with many languages, Chinese makes use of function words to construct phrases/-
clauses/sentences. We introduce 4 function categories that are regularly used in Chinese
NPs. The following example NP from C.-T. J. Huang et al. (2009):

(114) B —FF ig
na yi gan giang
that gun

Note that modifier-head adjectival compounds are exception. They reduplicate as ABAB rather than AABB.
Note that the classification of “4f%” (bd) and “#” as prepositions is questioned by many linguists.
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contains three different categories of function words:
1. A Determinor “3" (na; that), which explicitly mark the current NP as a definite NP®;
2. A Numeral “—" (y}i; one), indicating there is only one gun; and

3. A Classifier “¥F”, indicting “gun” belongs to a class of objects with the general shape
and texture of a thin shaft. This category resembles the word “piece” in the context of
“a piece of” in English, but the major difference is that, in Chinese, every noun could
associate with a classifier.

The last one is the Particle, a typical example of which is the word “HJ” (de). Practically,
it appears in the syntactic context [X F] Y] (C.-T. J. Huang et al., 2009), where if Y is a noun,
then X could be any of a noun (phrase), an adjective (phrase), a preposition (phrase), or a
full clause. It turns a phrase inside a larger NP into a modifier, for example:

(115)  a. XAIEHEAIMA
zhé wei xuézhé de guandian
this scholar’s opinion
b.  THEARIFE
shifén yourén dé tidojian very enticing term
¢ KRTHFHES
guanyu zhanzhéng de chudnyan
gossip about war
d. FEEIMIEH
wo qit guéwai de liyéu
the reason for my going abroad

In turn, these examples have Xs that is a noun phrase, an adjective phrase, a preposition
phrase, and a clause.

A.2 Structure of NPs in Chinese

One important characteristic of Chinese NPs is their “simplicity”. 7 Consider the bare
noun “#1” (gdu; dog) in the following example sentences from C.-T. . Huang et al. (2009):

(116)  a. JUIREEEA -
gou hén congming
Dogs are intelligent.
b. HEH -
wo kan dao gou
I saw a dog/dogs.
c. JBET .
gou pao zou le
The dog(s) ran away.

6 The definitness of Chinese NPs is not always expressed explicitly.
7 A more precise terminology of the subject matter we aim at here is “nominal phrase”, but, for simplicity, we keep
using the abbreviation “NP”.

211



SYNTAX OF THE CHINESE NOUN PHRASE: A BRIEF SYNOPSIS

From this example, we could easily find that the bare noun “¥5” could be either a definite
NP (sentence (116-c)) or an indefinite NP (sentence (116-a) and (116-b)); or either a singular
noun or a plural noun (sentence (116-b) and (116-c)). In other words, a bare noun in Chinese
equals to [(definite/indefinite) article + (singular/plural) noun] in English. Conversely, in
some of the situations, Chinese NPs might also appear to be more “complex”. For example,
when counting, a Chinese NP needs classifier (e.g., the classifier “Z%” in the NP “=74"
(sanbénsh; three books)) while a English NP only combines the number with a noun in
plural form: “three books”.

Also note that in this review, we call a determiner phrase (DP) an NP, which is not fully
correct in theoretical linguistics. For example, “the book” is a DP containing a NP “book”.
Interestingly, as discussed above, a Chinese NP can act as an English DP. Although in light
of Hong and Shi (2013) and C.-T. J. Huang et al. (2009), there are benefits to interpreting
every nominal phrase in Chinese as a DP, for this thesis, given our subject matter (i.e.,
NLG), there is no risk to call all of them (i.e., Chinese nominal phrase, Chinese NP, Chinese
DP, and English DP) as NPs. In what follows, we start to introduce the structure and
sub-structures of Chinese NPs.

A.2.1 Number Phrase

One major constituent of the Chinese NP is the number phrase, which is constructed
through the form [number + classifier + noun], such as “=74" (sanbénsh; three books).
Generally speaking, Chinese number phrases are regarded as non-definite expressions (e.g.,
sentence (117-b)) and do not occur in subject or topic positions (e.g., sentence (117-a)). On
the contrary, bare nouns in subject and topic positions are definite expressions.

However, such a statement (i.e., number phrases cannot be placed in subject or topic
positions) is not always true. Y.-h. A. Li (2006) argued that number phrases can be
allowed in subject or topic positions if they involve the notion of “quantity”. For example,
the sentence (117-a) is un-grammatical while the sentence (117-c) is grammatical. This
is because the “ KM~ (dadgai; probably) in (117-c) expresses the sufficiency of a certain
amount, indicting the the number phrase in its subject position (i.e., “= > 4" (san ge
xuéshéng; three students)) denotes quantity.

(117)  a. * =24 R DO 2T &R

san ge xuéshéng, wo yiwéi chile dangao
Three students, I thought (they) ate the cake.

b. AT HEE-
xuéshéng chile dangao
The students ate the cake.

c =g, TR KM EAE B B
san ge xuéshéng, wo xiang dagai chibiwan lidng gé dangao
Three students, I think probably cannot finish two cakes.

C.-T. ]. Huang et al. (2009) labelled example (117-c) as a Quantity-denoting Expression and
example (117-a) as Indefinite Individual-denoting Expression to highlight the fact that they
refer to some entities/individuals (indefinite referents). Pragmatically, a quantity-denoting
expression does not co-refer with or bind a pronoun while an in-definite individual
denoting expression can be co-indexed with referential or bound pronouns. For example,
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the sentence (118) is not acceptable since the number phrase “= /1> A\” (san ge rén; three
people) cannot be referred by the pronoun “fff]”. We need a definite expression to replace
it.
(118)  * =~ N FaANE PIZE IR 45 T B9 BNEE .

san ge rén taibuigi lidngjia ni géi tamén de gangqin

Three people cannot lift two (of the) pianos that you gave to them.

The actual position of a number phrase in an NP is shown in (119), where D is “determiner”,
NumP is “number phrase”, CIP is “classifier phrase” and N is noun.

(119) NP
D NumP

Num CIP

| PN
= CL N

+ A

From now on, we head to the rest components in the tree.

A.2.2 Demonstrative

If demonstratives are in D position of (119), we should find [demonstrative + number +
classifier + noun], for example:

(1200 X/ =1 A

zhe/na san ge rén

this/that three people
A demonstrative is sometimes followed by a classifier directly, without a number, although
one may argue that the number "one" is present underlying because the interpretation is
singular:
(121)  X/FA A

zhe/na ge rén

this/that person

A.2.3 Pronoun

Both of the pattern [pronoun + number + classifier (+ noun)] and the pattern [pronoun +
noun] are possible:

(122)  a. fMBAT P D N/%E
tamén lidng ge rén/xuéshéng
(lit.) them two people/students
b. Af] 4

tamén xuéshéng
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(lit.) them students
c. fBfIT=4

tamén san ge

(lit.) them three

However, when the number and classifier expressions do not occur, the pronoun must be
plural:

(123) * ta xuesheng
ta xuésheng
(lit.) he student

These expressions can occur in all argument positions.

Given the structure in (119), since pronouns are similar to the definite article in English,
pronoun occupies the D position. As a matter of fact, pronouns and demonstratives, which
have both been claimed to occupy the D position, can occur together:

(124) B BN AR XL e 47
wo xthuan nimén zhéxié guai héizi
(lit.) I like you these good kids.

In this case, we say they are in a double-headed D position or two separate D positions.

A.2.4 Proper Names

Proper names in Chinese could also occur in the D position, followed by a pronoun or a
demonstrative in the D position and a number expression. This said, the following two
structures are acceptable: [proper name + pronoun/demonstrative + number + classifier
+ noun] (example (125-a)) or [proper name + pronoun + demonstrative (+ noun phrase)]
(example (125-b)).

(125)  a. P EXEKR= AN AT LA TR T
wo xthuan zhangsan hé lisi tamén jige guai haizi
(lit.) I like Zhangsan, Lisi those several good kids.
b. B EXGK= XA I ) A
wo xihuan zhangsan ta zhegeé yonggong de xuéshéng
(lit.) I like Zhangsan him this diligent student.

In the same NP, the pronoun does not need to agree with the proper name in number,
but the pronoun needs to be plural if the number following the pronoun is more than one:

(126) a. F& EWEK= BT FB) =4 -
wo xthuan zhangsan tamén (na) sange
(lit.) I like Zhangsan those three.
b. * B EW K= b () =1 -
wo xihuan zhangsan ta (na) sange
(lit.) I like Zhangsan him those three
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Unlike pronouns, proper names cannot precede nouns directly:

(127)  x 3 EWOIR= A0 24
wo xthuan zhangsan hé lisi xuésheng
(lit.) I like Zhangsan and Lisi students.

To fix (127), a number expression or a pronoun/demonstrative is required.

A.2.5 Common Nouns

Common nouns in Chinese can sometimes function as proper names, and proper names
can sometimes function as common nouns. In other words, in addition to the N position in
Figure (119), a common noun, acting as a proper name, can also precede [(pronoun/demon-
strative) + number + classifier] (i.e., being in the D position). The common noun “z3 5"
(didi; little brother) takes the D position in the following sentence and acts as a proper name.

(128) % il —4> A B R T AL -
didi ta yige rén jit ji&juéle wenti
My little brother solved the whole problem on his own.

A.3 Other Issues in Chinese NP

In this sub-section, we discuss a few remaining issues related to Chinese NPs.

A.3.1 Plurality

For expressing plurality, on the one hand, as discussed, a bare noun in Chinese can denote
plurality. On the other hand, the Chinese do not have much inflectional morphology. One
specific plural morpheme that is worth mentioning here is the morpheme “{/1” (mén),
which inflects merely pronouns as well as human nouns. However, Y.-h. A. Li (1999)
argued that “f/1” is somehow more like a "collective" marker rather than the traditionally
understood plural morpheme. A number phrase with a common noun as the head is
incompatible with “f]”:

(129)  * = 4> 224
san ge xuéshéng mén
three students
Conversely, consider the following example, “# F 11" (hazimen; children) with a “f/]”

morpheme to refer to a definite group. Without “f]”, this NP becomes indefinite and
vague.

(130) k& L EZFA

woO qut zhdo haizimen

I will go find the children.
In nutshell, C.-T. J. Huang et al. (2009) summarised the use of “f/]” using the following
rules:
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“{1” can be suffixed to pronoun, proper name, and some common nouns;
e Common nouns with “{/]” must be interpreted as definite;

 The “{/]” attached to proper names can sometimes be interpreted as a plural marker
if it refers to individuals with same/similar name/property;

* A pronoun/proper name with “{/]” can be followed, but not preceded, by a number
phrase. In the cases with proper names, it only has a collective reading.
A.3.2 Distributive Marker

As discussed above, a pronoun with “{/]1” followed by a number phrase could have a plural
reading. However, it can only be done with the help of a distributive marker “#}” (dou):

(131) AT B LSS T -
tamén lidngge dou jiéhin le
Both of them got married.

It must be about two marriages, rather than the two of them being married to each other).
This concludes our brief synopsis of the syntax of the Chinese NPs.
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APPENDIX B I

Samenvatting

In het baanbrekende werk van de taalkundige James Huang worden menselijke talen
onderverdeeld in “koele” talen (d.w.z. talen die meer athankelijk zijn van context) en
“warme” talen (d.w.z. talen die minder afhankelijk zijn van context). Mandarijn wordt
beschouwd als een schoolvoorbeeld van koele talen, veel koeler dan westerse talen zoals
het Engels en het Nederlands; met andere woorden, Huang veronderstelde dat de beoogde
betekenis van uitdrukkingen in het Mandarijn meer athangt van de context dan die van
hun Engelse tegenhangers. Voortbouwend op dit idee lijkt het aannemelijk dat woorden
en zinsdelen in het Mandarijn eerder worden weggelaten of ondergespecificeerd dan in
het Engels, mits hun context de lezers voldoende informatie kan bieden omde bedoelde
betekenis af te leiden.

James Huang introduceerde oorspronkelijk “koelte” in verband met het gebruik van
anafora in het Mandarijn en het Engels. Concreet voerde hij aan dat Engels een warme taal
is omdat Engelse voornaamwoorden over het algemeen niet kunnen worden weggelaten,
terwijl Mandarijn koel is, omdat de voornaamwoorden meestal op heel natuurlijke wijze
kunnen worden weggelaten. Als iemand bijvoorbeeld vraagt: “Heeft John Tom gisteren
gezien?”, dan kan een Mandarijn-spreker eenvoudig “%& I, T ” (kanjian le, saw) antwoorden
om de betekenis uit te drukken “Hij zag hem”. In dit voorbeeld worden voornaamwoorden
in zowel de onderwerppositie als de objectpositie verwijderd. Daarentegen kan het Engelse
woord “saw” (en evenzo het Nederlandse word “keek”) op zichzelf geen volledige en
grammaticaal correcte zin vormen. Het weglaten van voornaamwoorden wordt “pro-
drop” genoemd. Voornaamwoorden (d.w.z. woorden zoals hij en hem) en weggelaten
voornaamwoorden (d.w.z. pro-drop) zijn twee verschillende soorten anaforische (d.w.z.
verkorte) verwijzingen.

In later werk is het begrip koelte soms in een bredere zin opgevat en omvat het andere
fenomenen dan anafora. Het is bijvoorbeeld in verband gebracht met de afweging tussen
duidelijkheid en beknoptheid in taalgebruik. Er is gesuggereerd dat sprekers van “koele”
talen de neiging hebben om hun uitingen korter maar minder duidelijk te houden dan
sprekers van “warme” talen. Deze suggestie zou de impact van koelte op het taalgebruik
heel breed maken. In dit proefschrift hebben we besloten om ons te concentreren op
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zelfstandige naamwoorden en ons te richten op het begrijpen en valideren van de koelte-
hypothese op Mandarijn zelfstandige naamwoorden.

We hebben dit probleem aangepakt met behulp van Natural Language Generation
Technieken. In het bijzonder voeren we experimenten uit om erachter te komen wat Man-
darijnsprekers in een bepaalde situatie zeggen, vergelijken dit met wat Engelssprekenden
zeggen, we controleren of de uitkomsten in overeenstemming zijn met de “coolness”-
hypothese, en we bouwen modellen voor het genereren van natuurlijke taal om het gedrag
van menselijk sprekers na te bootsen. De resulterend computermodellen helpen ons beter
te begrijpen hoe mensen spreken. Omgekeerd kan het begrijpen van menselijke spraakpa-
tronen ons helpen om betere systemen voor het genereren van natuurlijke taal voor het
Mandarijn te bouwen, ook voor praktische doelen.

We waren benieuwd naar twee soorten Noun Phrases. De eerste soort is die van
refererende expressies. Stel, bij voorbeeld, dat Tom de enige student in de bus is en hij
draagt een bril. In de bus zitten 20 andere mensen en 3 van hen dragen een bril. Om naar
Tom te refereren (i.e., te verwijzen), kan men de verwijzende uitdrukking “de student”
gebruiken die alle andere objecten in de bus (bijvoorbeeld andere mensen, stoelen, enz.)
uitsluit. We zijn geinteresseerd in twee onderzoeksvragen:

¢ Onder welke omstandigheden kunnen verwijzende uitdrukkingen worden onderge-
specificeerd of zelfs geheel worden weggelaten (d.w.z. wanneer pro-drop plaatsvindt);

¢ Onder welke omstandigheden hebben sprekers de neiging om verwijzingen uitvo-
eriger te specificeren dan strikt nodig is? Dit gebeurt, in bovenstaand voorbeeld, als
we zeggen “de student die een bril draagt”, omdat “die een bril draagt” niet helpt
om eventuele “afleiders” uit te sluiten.

* Onder welke omstandigheden hebben sprekers de neiging om te weinig te speci-
ficeren? Bijvoorbeeld, “de persoon die een bril draagt” zou niet uniek naar Tom
verwijzen, omdat er andere mensen in de bus zijn die ook een bril dragen.

Het andere type zelfstandige naamwoorden waarop we ons concentreren, zijn kwan-
tificerence uitdrukkingen. Om de situatie van mensen in de bovengenoemde bus te
beschrijven, zou je kunnen zeggen: “Er zit maar één student in de bus.” Of “Een paar
mensen in de bus dragen een bril”. We onderzoeken welke soorten gekwantificeerde
uitdrukkingen Mandarijn en Engelssprekenden gebruiken en hoe ze gekwantificeerde
uitdrukkingen anders gebruiken.

Bij het modelleren van de productie van deze twee soorten zelfstandige naamwoorden
hebben we verschillende rekenmodellen gebruikt: van klassieke op regels gebaseerde
modellen tot op neurale netwerken gebaseerde modellen. Hoewel state-of-the-art neurale
modellen vaak beter presteren dan klassieke, op regels gebaseerde modellen, gedragen
deze modellen zich vaak als ‘zwarte dozen” die moeilijk te koppelen zijn aan linguistische
of andere inzichten. Bovendien vonden we dat neurale modellen het soms niet goed
doen op end2end Natural Language Generation. Samengevat stellen we dat de toekomst
toebehoort aan hybride systemen die verschillende rekenmethoden combineren.

We koppelen de verschijnselen die we tijdens onze studies hebben waargenomen aan
de koelte-hypothese. Als de koelte-hypothese juist is, dan is het aannemelijk dat we in het
Mandarijn minder overspecificaties en meer onderspecificaties kunnen vinden dan in het
Engels. Hoewel het meeste bewijsmateriaal dat we gevonden hebben “koelte” ondersteunt,
hebben we ook soms evidentie voor het omgekeerde gevonden. Dit suggereert dat de

218



koelte-hypothese in bepaalde situaties opgaat, maar niet altijd. We hopen dat ons werk de
weg zal effenen voor computationeel onderzoek naar andere verschillen tussen talen, en
dat het zal leiden tot betere systemen voor het genereren van teksten in het Mandarijn.
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